mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2017-12-18 
Just like last year, TD and I spent some time in November this year designing a puzzle Christmas card for Chalkdust.
The card looks boring at first glance, but contains 10 puzzles. Converting the answers to base 3, writing them in the boxes on the front, then colouring the 1s black and 2s orange will reveal a Christmassy picture.
If you want to try the card yourself, you can download this pdf. Alternatively, you can find the puzzles below and type the answers in the boxes. The answers will be automatically converted to base 3 and coloured...
#Answer (base 10)Answer (base 3)
10000000
20000000
30000000
40000000
50000000
60000000
70000000
80000000
90000000
100000000
  1. In a book with 116 pages, what do the page numbers of the middle two pages add up to?
  2. What is the largest number that cannot be written in the form \(14n+29m\), where \(n\) and \(m\) are non-negative integers?
  3. How many factors does the number \(2^6\times3^{12}\times5^2\) have?
  4. How many squares (of any size) are there in a \(15\times14\) grid of squares?
  5. You take a number and make a second number by removing the units digit. The sum of these two numbers is 1103. What was your first number?
  6. What is the only three-digit number that is equal to a square number multiplied by the reverse of the same square number? (The reverse cannot start with 0.)
  7. What is the largest three-digit number that is equal to a number multiplied by the reverse of the same number? (The reverse cannot start with 0.)
  8. What is the mean of the answers to questions 6, 7 and 8?
  9. How many numbers are there between 0 and 100,000 that do not contain the digits 0, 1, 2, 3, 4, 5, or 6?
  10. What is the lowest common multiple of 52 and 1066?

Similar posts

Christmas card 2016
Christmas card 2019
Christmas card 2018
Christmas (2019) is over

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Jose: There is a mistake in your answer: 243 (0100000) is the number of numbers between 10,000 and 100,000 that do not contain the digits 0, 1, 2, 3, 4, 5, or 6.
Matthew
                 Reply
Thanks for the puzzle!
Is it possible that the question 9 is no correct?
I get a penguin with perfect simetrie except at answer 9 : 0100000 that breaks the simetry.
Is it correct or a mistake in my answer?
Thx
Jose
                 Reply
@C: look up something called Frobenius numbers. This problem's equivalent to finding the Frobenius number for 14 and 29.
Lewis
                 Reply
I can solve #2 with code, but is there a tidy maths way to solve it directly?
C
                 Reply
My efforts were flightless.
NHH
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "odd" in the box below (case sensitive):
 2016-12-20 
Last week, I posted about the Christmas card I designed on the Chalkdust blog.
The card looks boring at first glance, but contains 12 puzzles. Converting the answers to base 3, writing them in the boxes on the front, then colouring the 1s green and 2s red will reveal a Christmassy picture.
If you want to try the card yourself, you can download this pdf. Alternatively, you can find the puzzles below and type the answers in the boxes. The answers will be automatically converted to base 3 and coloured...
#Answer (base 10)Answer (base 3)
1000000000
2000000000
3000000000
4000000000
5000000000
6000000000
7000000000
8000000000
9000000000
10000000000
11000000000
12000000000
  1. The square number larger than 1 whose square root is equal to the sum of its digits.
  2. The smallest square number whose factors add up to a different square number.
  3. The largest number that cannot be written in the form \(23n+17m\), where \(n\) and \(m\) are positive integers (or 0).
  4. Write down a three-digit number whose digits are decreasing. Write down the reverse of this number and find the difference. Add this difference to its reverse. What is the result?
  5. The number of numbers between 0 and 10,000,000 that do not contain the digits 0, 1, 2, 3, 4, 5 or 6.
  6. The lowest common multiple of 57 and 249.
  7. The sum of all the odd numbers between 0 and 66.
  8. One less than four times the 40th triangle number.
  9. The number of factors of the number \(2^{756}\)×\(3^{12}\).
  10. In a book with 13,204 pages, what do the page numbers of the middle two pages add up to?
  11. The number of off-diagonal elements in a 27×27 matrix.
  12. The largest number, \(k\), such that \(27k/(27+k)\) is an integer.

Similar posts

Christmas card 2017
Christmas card 2019
Christmas card 2018
Christmas (2019) is over

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Matthew: Thank you for the prompt response! It makes sense now and perhaps I should have read a little closer!
Dan Whitman
                 Reply
@Dan Whitman: Find the difference between the original number and the reverse of the original. Call this difference \(a\). Next add \(a\) to the reverse of \(a\)...
Matthew
                 Reply
In number 4 what are we to take the difference between? Do you mean the difference between the original number and its reverse? If so when you add the difference back to the reverse you simply get the original number, which is ambiguous. I am not sure what you are asking us to do here.
Dan Whitman
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "cosine" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

final fantasy advent calendar countdown python matrices palindromes platonic solids dragon curves national lottery triangles inline code computational complexity javascript football geometry latex matrix multiplication european cup boundary element methods royal institution weather station polynomials video games cambridge exponential growth coins chalkdust magazine puzzles games error bars manchester phd raspberry pi data visualisation mathsteroids plastic ratio frobel geogebra signorini conditions folding tube maps electromagnetic field rhombicuboctahedron reuleaux polygons harriss spiral arithmetic nine men's morris simultaneous equations machine learning statistics mathslogicbot graphs finite element method christmas card tennis fractals ternary folding paper golden spiral estimation bempp talking maths in public game of life twitter misleading statistics noughts and crosses gerry anderson wool people maths matrix of cofactors logic manchester science festival stickers pac-man game show probability matrix of minors martin gardner bodmas squares convergence matt parker sobolev spaces news pizza cutting trigonometry cross stitch london draughts logs sport light determinants sorting royal baby php the aperiodical craft ucl radio 4 a gamut of games approximation data oeis dataset hannah fry braiding graph theory hats reddit propositional calculus christmas pythagoras gaussian elimination tmip interpolation accuracy sound chess map projections weak imposition chebyshev go binary speed books mathsjam big internet math-off rugby menace quadrilaterals bubble bobble curvature london underground probability dates captain scarlet realhats programming world cup preconditioning inverse matrices asteroids hexapawn golden ratio wave scattering flexagons numerical analysis

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020