mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2020-05-15 
This is a post I wrote for The Aperiodical's Big Lock-Down Math-Off. You can vote for (or against) me here until 9am on Sunday...
Recently, I came across a surprising fact: if you take any quadrilateral and join the midpoints of its sides, then you will form a parallelogram.
The blue quadrilaterals are all parallelograms.
The first thing I thought when I read this was: "oooh, that's neat." The second thing I thought was: "why?" It's not too difficult to show why this is true; you might like to pause here and try to work out why yourself before reading on...
To show why this is true, I started by letting \(\mathbf{a}\), \(\mathbf{b}\), \(\mathbf{c}\) and \(\mathbf{d}\) be the position vectors of the vertices of our quadrilateral. The position vectors of the midpoints of the edges are the averages of the position vectors of the two ends of the edge, as shown below.
The position vectors of the corners and the midpoints of the edges.
We want to show that the orange and blue vectors below are equal (as this is true of opposite sides of a parallelogram).
We can work these vectors out: the orange vector is$$\frac{\mathbf{d}+\mathbf{a}}2-\frac{\mathbf{a}+\mathbf{b}}2=\frac{\mathbf{d}-\mathbf{b}}2,$$ and the blue vector is$$\frac{\mathbf{c}+\mathbf{d}}2-\frac{\mathbf{b}+\mathbf{c}}2=\frac{\mathbf{d}-\mathbf{b}}2.$$
In the same way, we can show that the other two vectors that make up the inner quadrilateral are equal, and so the inner quadrilateral is a parallelogram.

Going backwards

Even though I now saw why the surprising fact was true, my wondering was not over. I started to think about going backwards.
It's easy to see that if the outer quadrilateral is a square, then the inner quadrilateral will also be a square.
If the outer quadrilateral is a square, then the inner quadrilateral is also a square.
It's less obvious if the reverse is true: if the inner quadrilateral is a square, must the outer quadrilateral also be a square? At first, I thought this felt likely to be true, but after a bit of playing around, I found that there are many non-square quadrilaterals whose inner quadrilaterals are squares. Here are a few:
A kite, a trapezium, a delta kite, an irregular quadrilateral and a cross-quadrilateral whose innner quadrilaterals are all a square.
There are in fact infinitely many quadrilaterals whose inner quadrilateral is a square. You can explore them in this Geogebra applet by dragging around the blue point:
As you drag the point around, you may notice that you can't get the outer quadrilateral to be a non-square rectangle (or even a non-square parallelogram). I'll leave you to figure out why not...
×2      ×3      ×2      ×3      ×2
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
Nice post! Just a minor nitpick, I found it weird that you say "In the same way, we can show that the other two vectors that make up the inner quadrilateral are equal, and so the inner quadrilateral is a parallelogram."
This is true but it's not needed (it's automatically true), you have in fact already proved that this is a parallelogram, by proving that two opposite sides have same length and are parallel (If you prove that the vectors EF and GH have the same coordinates, then EFHG is a parallelogram.)
Vivien
×2   ×2   ×2   ×2   ×2     Reply
mscroggs.co.uk is interesting as far as MATHEMATICS IS CONCERNED!
DEB JYOTI MITRA
×2   ×3   ×2   ×2   ×4     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "noitauqe" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

hats talking maths in public bempp numbers correlation manchester science festival simultaneous equations wave scattering propositional calculus reuleaux polygons convergence martin gardner game show probability gerry anderson datasaurus dozen books misleading statistics inline code inverse matrices christmas card football runge's phenomenon friendly squares recursion polynomials guest posts crochet squares logic flexagons chalkdust magazine rhombicuboctahedron cross stitch sound plastic ratio big internet math-off triangles sobolev spaces sport regular expressions hyperbolic surfaces realhats fence posts computational complexity geogebra stirling numbers gaussian elimination weak imposition braiding people maths numerical analysis ternary final fantasy dates world cup folding paper manchester chebyshev crossnumber matrix of minors pi approximation day determinants matrices golden spiral boundary element methods national lottery matrix multiplication logo data visualisation countdown rugby a gamut of games draughts crosswords kings dataset mathsteroids phd craft newcastle oeis matrix of cofactors tennis dinosaurs cambridge exponential growth pac-man hexapawn london underground video games stickers arithmetic logs puzzles go fractals chess binary curvature palindromes mean edinburgh games quadrilaterals dragon curves noughts and crosses bots christmas platonic solids reddit electromagnetic field machine learning turtles zines frobel folding tube maps menace trigonometry radio 4 news 24 hour maths royal baby signorini conditions harriss spiral errors tmip wool geometry bodmas ucl interpolation youtube programming mathslogicbot fonts php gather town data bubble bobble advent calendar probability graph theory coins matt parker weather station estimation python the aperiodical finite element method latex asteroids royal institution map projections pascal's triangle sorting european cup golden ratio pizza cutting pythagoras accuracy light captain scarlet mathsjam databet speed crossnumbers live stream statistics graphs hannah fry approximation javascript nine men's morris game of life anscombe's quartet error bars pi standard deviation preconditioning finite group london raspberry pi

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025