mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2020-05-15 
This is a post I wrote for The Aperiodical's Big Lock-Down Math-Off. You can vote for (or against) me here until 9am on Sunday...
Recently, I came across a surprising fact: if you take any quadrilateral and join the midpoints of its sides, then you will form a parallelogram.
The blue quadrilaterals are all parallelograms.
The first thing I thought when I read this was: "oooh, that's neat." The second thing I thought was: "why?" It's not too difficult to show why this is true; you might like to pause here and try to work out why yourself before reading on...
To show why this is true, I started by letting \(\mathbf{a}\), \(\mathbf{b}\), \(\mathbf{c}\) and \(\mathbf{d}\) be the position vectors of the vertices of our quadrilateral. The position vectors of the midpoints of the edges are the averages of the position vectors of the two ends of the edge, as shown below.
The position vectors of the corners and the midpoints of the edges.
We want to show that the orange and blue vectors below are equal (as this is true of opposite sides of a parallelogram).
We can work these vectors out: the orange vector is$$\frac{\mathbf{d}+\mathbf{a}}2-\frac{\mathbf{a}+\mathbf{b}}2=\frac{\mathbf{d}-\mathbf{b}}2,$$ and the blue vector is$$\frac{\mathbf{c}+\mathbf{d}}2-\frac{\mathbf{b}+\mathbf{c}}2=\frac{\mathbf{d}-\mathbf{b}}2.$$
In the same way, we can show that the other two vectors that make up the inner quadrilateral are equal, and so the inner quadrilateral is a parallelogram.

Going backwards

Even though I now saw why the surprising fact was true, my wondering was not over. I started to think about going backwards.
It's easy to see that if the outer quadrilateral is a square, then the inner quadrilateral will also be a square.
If the outer quadrilateral is a square, then the inner quadrilateral is also a square.
It's less obvious if the reverse is true: if the inner quadrilateral is a square, must the outer quadrilateral also be a square? At first, I thought this felt likely to be true, but after a bit of playing around, I found that there are many non-square quadrilaterals whose inner quadrilaterals are squares. Here are a few:
A kite, a trapezium, a delta kite, an irregular quadrilateral and a cross-quadrilateral whose innner quadrilaterals are all a square.
There are in fact infinitely many quadrilaterals whose inner quadrilateral is a square. You can explore them in this Geogebra applet by dragging around the blue point:
As you drag the point around, you may notice that you can't get the outer quadrilateral to be a non-square rectangle (or even a non-square parallelogram). I'll leave you to figure out why not...

Similar posts

Mathsteroids
Interesting tautologies
Big Internet Math-Off stickers 2019
Runge's Phenomenon

Comments

Comments in green were written by me. Comments in blue were not written by me.
mscroggs.co.uk is interesting as far as MATHEMATICS IS CONCERNED!
DEB JYOTI MITRA
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "width" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Jul 2020

Happy √3ϕ+π-e Approximation Day!

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

geogebra talking maths in public cross stitch a gamut of games sobolev spaces probability sound bubble bobble estimation big internet math-off folding tube maps ternary weak imposition hexapawn statistics craft chalkdust magazine weather station chebyshev oeis exponential growth triangles pac-man programming reddit preconditioning countdown latex hats data puzzles map projections european cup error bars binary trigonometry light ucl final fantasy logs rhombicuboctahedron braiding chess realhats dataset gaussian elimination dragon curves frobel interpolation graphs reuleaux polygons advent calendar inverse matrices propositional calculus electromagnetic field pi matrix of minors pi approximation day martin gardner geometry machine learning computational complexity boundary element methods video games football news royal baby bodmas golden ratio london underground london game show probability matrices the aperiodical plastic ratio fractals coins phd nine men's morris curvature convergence tmip manchester rugby matrix multiplication platonic solids raspberry pi harriss spiral asteroids signorini conditions squares python game of life wool quadrilaterals wave scattering mathslogicbot christmas noughts and crosses approximation national lottery pythagoras christmas card golden spiral stickers php speed graph theory flexagons simultaneous equations go captain scarlet bempp folding paper dates inline code logic tennis draughts pizza cutting people maths world cup gerry anderson sorting matrix of cofactors twitter matt parker polynomials manchester science festival data visualisation numerical analysis mathsteroids menace arithmetic determinants royal institution finite element method misleading statistics accuracy palindromes cambridge hannah fry sport games books javascript mathsjam radio 4

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020