mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

PhD thesis, chapter 5

 2020-02-16 
This is the fifth post in a series of posts about my PhD thesis.
In the fifth and final chapter of my thesis, we look at how boundary conditions can be weakly imposed on the Helmholtz equation.

Analysis

As in chapter 4, we must adapt the analysis of chapter 3 to apply to Helmholtz problems. The boundary operators for the Helmholtz equation satisfy less strong conditions than the operators for Laplace's equation (for Laplace's equation, the operators satisfy a condition called coercivity; for Helmholtz, the operators satisfy a weaker condition called Gårding's inequality), making proving results about Helmholtz problem harder.
After some work, we are able to prove an a priori error bound (with \(a=\tfrac32\) for the spaces we use):
$$\left\|u-u_h\right\|\leqslant ch^{a}\left\|u\right\|$$

Numerical results

As in the previous chapters, we use Bempp to show that computations with this method match the theory.
The error of our approximate solutions of a Dirichlet (left) and mixed Dirichlet–Neumann problems in the exterior of a sphere with meshes with different values of \(h\). The dashed lines show order \(\tfrac32\) convergence.

Wave scattering

Boundary element methods are often used to solve Helmholtz wave scattering problems. These are problems in which a sound wave is travelling though a medium (eg the air), then hits an object: you want to know what the sound wave that scatters off the object looks like.
If there are multiple objects that the wave is scattering off, the boundary element method formulation can get quite complicated. When using weak imposition, the formulation is simpler: this one advantage of this method.
The following diagram shows a sound wave scattering off a mixure of sound-hard and sound-soft spheres. Sound-hard objects reflect sound well, while sound-soft objects absorb it well.
A sound wave scattering off a mixture of sound-hard (white) and sound-soft (black) spheres.
If you are trying to design something with particular properties—for example, a barrier that absorbs sound—you may want to solve lots of wave scattering problems on an object on some objects with various values taken for their reflective properties. This type of problem is often called an inverse problem.
For this type of problem, weakly imposing boundary conditions has advantages: the discretisation of the Calderón projector can be reused for each problem, and only the terms due to the weakly imposed boundary conditions need to be recalculated. This is an advantages as the boundary condition terms are much less expensive (ie they use much less time and memory) to calculate than the Calderón term that is reused.

This concludes chapter 5, the final chapter of my thesis. Why not celebrate reaching the end by cracking open the following figure before reading the concluding blog post.
An acoustic wave scattering off a sound-hard champagne bottle and a sound-soft cork.
Previous post in series
This is the fifth post in a series of posts about my PhD thesis.
Next post in series
×3      ×3      ×3      ×3      ×3
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "bisect" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

london guest posts weather station talking maths in public games harriss spiral advent calendar chebyshev bubble bobble polynomials anscombe's quartet determinants raspberry pi ternary curvature plastic ratio graph theory hats chalkdust magazine standard deviation youtube numbers programming final fantasy craft light rhombicuboctahedron cross stitch sorting simultaneous equations pi error bars logs menace friendly squares logo edinburgh gaussian elimination estimation reddit logic royal institution fonts manchester science festival probability dragon curves exponential growth matrices computational complexity flexagons squares quadrilaterals game show probability 24 hour maths sound newcastle dinosaurs hyperbolic surfaces weak imposition matrix of minors news misleading statistics propositional calculus royal baby geometry accuracy christmas card regular expressions video games palindromes bots braiding people maths pac-man matt parker countdown inline code preconditioning runge's phenomenon crochet numerical analysis puzzles boundary element methods electromagnetic field stirling numbers golden spiral mathsjam hannah fry frobel nine men's morris crosswords map projections reuleaux polygons folding paper crossnumber recursion hexapawn tennis machine learning platonic solids gather town mathslogicbot dataset matrix of cofactors latex oeis convergence python crossnumbers pythagoras mean turtles finite element method pascal's triangle fractals sobolev spaces pi approximation day arithmetic graphs cambridge signorini conditions data draughts matrix multiplication go wool martin gardner dates noughts and crosses correlation phd trigonometry sport captain scarlet big internet math-off game of life inverse matrices coins chess speed databet javascript london underground national lottery european cup mathsteroids wave scattering data visualisation statistics pizza cutting golden ratio ucl books datasaurus dozen a gamut of games stickers errors bempp asteroids live stream folding tube maps approximation football triangles fence posts kings christmas radio 4 rugby interpolation manchester php finite group binary tmip bodmas zines gerry anderson the aperiodical realhats world cup geogebra

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025