mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

A surprising fact about quadrilaterals

 2020-05-15 
This is a post I wrote for The Aperiodical's Big Lock-Down Math-Off. You can vote for (or against) me here until 9am on Sunday...
Recently, I came across a surprising fact: if you take any quadrilateral and join the midpoints of its sides, then you will form a parallelogram.
The blue quadrilaterals are all parallelograms.
The first thing I thought when I read this was: "oooh, that's neat." The second thing I thought was: "why?" It's not too difficult to show why this is true; you might like to pause here and try to work out why yourself before reading on...
To show why this is true, I started by letting \(\mathbf{a}\), \(\mathbf{b}\), \(\mathbf{c}\) and \(\mathbf{d}\) be the position vectors of the vertices of our quadrilateral. The position vectors of the midpoints of the edges are the averages of the position vectors of the two ends of the edge, as shown below.
The position vectors of the corners and the midpoints of the edges.
We want to show that the orange and blue vectors below are equal (as this is true of opposite sides of a parallelogram).
We can work these vectors out: the orange vector is$$\frac{\mathbf{d}+\mathbf{a}}2-\frac{\mathbf{a}+\mathbf{b}}2=\frac{\mathbf{d}-\mathbf{b}}2,$$ and the blue vector is$$\frac{\mathbf{c}+\mathbf{d}}2-\frac{\mathbf{b}+\mathbf{c}}2=\frac{\mathbf{d}-\mathbf{b}}2.$$
In the same way, we can show that the other two vectors that make up the inner quadrilateral are equal, and so the inner quadrilateral is a parallelogram.

Going backwards

Even though I now saw why the surprising fact was true, my wondering was not over. I started to think about going backwards.
It's easy to see that if the outer quadrilateral is a square, then the inner quadrilateral will also be a square.
If the outer quadrilateral is a square, then the inner quadrilateral is also a square.
It's less obvious if the reverse is true: if the inner quadrilateral is a square, must the outer quadrilateral also be a square? At first, I thought this felt likely to be true, but after a bit of playing around, I found that there are many non-square quadrilaterals whose inner quadrilaterals are squares. Here are a few:
A kite, a trapezium, a delta kite, an irregular quadrilateral and a cross-quadrilateral whose innner quadrilaterals are all a square.
There are in fact infinitely many quadrilaterals whose inner quadrilateral is a square. You can explore them in this Geogebra applet by dragging around the blue point:
As you drag the point around, you may notice that you can't get the outer quadrilateral to be a non-square rectangle (or even a non-square parallelogram). I'll leave you to figure out why not...
×2      ×3      ×2      ×3      ×2
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
Nice post! Just a minor nitpick, I found it weird that you say "In the same way, we can show that the other two vectors that make up the inner quadrilateral are equal, and so the inner quadrilateral is a parallelogram."
This is true but it's not needed (it's automatically true), you have in fact already proved that this is a parallelogram, by proving that two opposite sides have same length and are parallel (If you prove that the vectors EF and GH have the same coordinates, then EFHG is a parallelogram.)
Vivien
×2   ×2   ×2   ×2   ×2     Reply
mscroggs.co.uk is interesting as far as MATHEMATICS IS CONCERNED!
DEB JYOTI MITRA
×2   ×3   ×2   ×2   ×4     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "ratio" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Jun 2025

A nonogram alphabet

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

chess triangles flexagons countdown national lottery ternary mathslogicbot sound propositional calculus advent calendar graph theory logo game of life error bars reddit crosswords convergence craft pythagoras manchester martin gardner captain scarlet geometry palindromes menace pac-man tennis london runge's phenomenon databet hyperbolic surfaces 24 hour maths oeis datasaurus dozen braiding platonic solids books go matrix of minors determinants gather town fence posts cross stitch matrices rugby simultaneous equations regular expressions inverse matrices hats correlation newcastle programming bots live stream mathsteroids football estimation hannah fry game show probability nine men's morris inline code stirling numbers misleading statistics probability noughts and crosses interpolation sport christmas edinburgh electromagnetic field world cup logs alphabets raspberry pi statistics tmip harriss spiral coins people maths crossnumber manchester science festival radio 4 big internet math-off royal institution matrix multiplication royal baby golden ratio data visualisation pi approximation day weak imposition crossnumbers pascal's triangle dinosaurs news folding tube maps plastic ratio london underground rhombicuboctahedron realhats folding paper errors arithmetic frobel mean bempp light pizza cutting final fantasy binary machine learning video games zines christmas card weather station draughts computational complexity crochet matrix of cofactors dates fractals fonts map projections javascript friendly squares accuracy approximation numbers trigonometry numerical analysis recursion exponential growth signorini conditions bodmas puzzles geogebra gerry anderson data youtube graphs polynomials finite element method bubble bobble dataset ucl wave scattering chalkdust magazine logic gaussian elimination stickers hexapawn sobolev spaces a gamut of games guest posts quadrilaterals golden spiral cambridge talking maths in public python asteroids turtles games phd the aperiodical php kings boundary element methods squares matt parker dragon curves mathsjam preconditioning nonograms speed finite group reuleaux polygons curvature sorting standard deviation european cup pi anscombe's quartet wool latex chebyshev

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025