mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Runge's Phenomenon

 2018-09-13 
This is a post I wrote for round 2 of The Aperiodical's Big Internet Math-Off 2018. As I went out in round 1 of the Big Math-Off, you got to read about the real projective plane instead of this.
Polynomials are very nice functions: they're easy to integrate and differentiate, it's quick to calculate their value at points, and they're generally friendly to deal with. Because of this, it can often be useful to find a polynomial that closely approximates a more complicated function.
Imagine a function defined for \(x\) between -1 and 1. Pick \(n-1\) points that lie on the function. There is a unique degree \(n\) polynomial (a polynomial whose highest power of \(x\) is \(x^n\)) that passes through these points. This polynomial is called an interpolating polynomial, and it sounds like it ought to be a pretty good approximation of the function.
So let's try taking points on a function at equally spaced values of \(x\), and try to approximate the function:
$$f(x)=\frac1{1+25x^2}$$
Polynomial interpolations of \(\displaystyle f(x)=\frac1{1+25x^2}\) using equally spaced points
I'm sure you'll agree that these approximations are pretty terrible, and they get worse as more points are added. The high error towards 1 and -1 is called Runge's phenomenon, and was discovered in 1901 by Carl David Tolmé Runge.
All hope of finding a good polynomial approximation is not lost, however: by choosing the points more carefully, it's possible to avoid Runge's phenomenon. Chebyshev points (named after Pafnuty Chebyshev) are defined by taking the \(x\) co-ordinate of equally spaced points on a circle.
Eight Chebyshev points
The following GIF shows interpolating polynomials of the same function as before using Chebyshev points.
Nice, we've found a polynomial that closely approximates the function... But I guess you're now wondering how well the Chebyshev interpolation will approximate other functions. To find out, let's try it out on the votes over time of my first round Big Internet Math-Off match.
Scroggs vs Parker, 6-8 July 2018
The graphs below show the results of the match over time interpolated using 16 uniform points (left) and 16 Chebyshev points (right). You can see that the uniform interpolation is all over the place, but the Chebyshev interpolation is very close the the actual results.
Scroggs vs Parker, 6-8 July 2018, approximated using uniform points (left) and Chebyshev points (right)
But maybe you still want to see how good Chebyshev interpolation is for a function of your choice... To help you find out, I've wrote @RungeBot, a Twitter bot that can compare interpolations with equispaced and Chebyshev points. Since first publishing this post, Twitter's API changes broke @RungeBot, but it lives on on Mathstodon: @RungeBot@mathstodon.xyz. Just tweet it a function, and it'll show you how bad Runge's phenomenon is for that function, and how much better Chebysheb points are.
For example, if you were to toot "@RungeBot@mathstodon.xyz f(x)=abs(x)", then RungeBot would reply: "Here's your function interpolated using 17 equally spaced points (blue) and 17 Chebyshev points (red). For your function, Runge's phenomenon is terrible."
A list of constants and functions that RungeBot understands can be found here.
×1      ×1      ×1      ×1      ×1
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
Hi Matthew, I really like your post. Is there a benefit of using chebyshev spaced polynomial interpolation rather than OLS polynomial regression when it comes to real world data? It is clear to me, that if you have a symmetric function your approach is superior in capturing the center data point. But in my understanding in your vote-example a regression minimizing the residuals would be preferrable in minimizing the error. Or do I miss something?
Benedikt
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "tneitouq" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Jun 2025

A nonogram alphabet

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

ucl triangles runge's phenomenon advent calendar fonts preconditioning martin gardner pac-man golden spiral rhombicuboctahedron php matrix multiplication guest posts video games misleading statistics databet go big internet math-off nonograms crossnumbers stirling numbers the aperiodical tmip errors data visualisation hannah fry news accuracy curvature dragon curves latex pi approximation day pizza cutting standard deviation pythagoras weak imposition wool binary reddit national lottery oeis mathsjam determinants talking maths in public speed tennis dataset statistics plastic ratio logs convergence pascal's triangle youtube gerry anderson european cup 24 hour maths puzzles boundary element methods platonic solids nine men's morris folding tube maps crochet hyperbolic surfaces game of life matrices weather station royal baby recursion hats numbers exponential growth estimation map projections books games stickers friendly squares bots gather town mean alphabets realhats anscombe's quartet electromagnetic field finite group cambridge golden ratio cross stitch football correlation matrix of cofactors harriss spiral christmas people maths simultaneous equations braiding interpolation manchester regular expressions sound asteroids python arithmetic frobel chebyshev london matrix of minors sorting crosswords live stream dates fractals zines machine learning chalkdust magazine geogebra logic numerical analysis graphs craft reuleaux polygons quadrilaterals trigonometry captain scarlet phd radio 4 mathslogicbot crossnumber dinosaurs edinburgh raspberry pi turtles menace newcastle sobolev spaces final fantasy coins bodmas hexapawn countdown ternary christmas card chess probability london underground a gamut of games royal institution approximation computational complexity world cup propositional calculus data inline code geometry bempp inverse matrices draughts noughts and crosses error bars manchester science festival pi javascript bubble bobble matt parker finite element method signorini conditions folding paper game show probability kings polynomials light rugby flexagons graph theory programming logo wave scattering gaussian elimination fence posts squares datasaurus dozen palindromes sport mathsteroids

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025