mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

The end of coins of constant width

 2017-03-27 
Tomorrow, the new 12-sided one pound coin is released.
Although I'm excited about meeting this new coin, I am also a little sad, as its release ends the era in which all British coins are shapes of constant width.

Shapes of constant width

A shape of constant width is a shape that is the same width in every direction, so these shapes can roll without changing height. The most obvious such shape is a circle. But there are others, including the shape of the seven-sided 50p coin.
As shown below, each side of a 50p is part of a circle centred around the opposite corner. As a 50p rolls, its height is always the distance between one of the corners and the side opposite, or in other words the radius of this circle. As these circles are all the same size, the 50p is a shape of constant width.
Shapes of constant width can be created from any regular polygon with an odd number of sides, by replacing the sides by parts of circles centred at the opposite corner. The first few are shown below.
It's also possible to create shapes of constant width from irregular polygons with an odd number, but it's not possible to create them from polygons with an even number of sides. Therefore, the new 12-sided pound coin will be the first non-constant width British coin since the (also 12-sided) threepenny bit was phased out in 1971.
Back in 2014, I wrote to my MP in an attempt to find out why the new coin was not of a constant width. He forwarded my letter to the Treasury, but I never heard back from them.

Pizza cutting

When cutting a pizza into equal shaped pieces, the usual approach is to cut along a few diameters to make triangles. There are other ways to fairly share pizza, including the following (that has appeared here before as an answer to this puzzle):
The slices in this solution are closely related to a triangle of constant width. Solutions can be made using other shapes of constant width, including the following, made using a constant width pentagon and heptagon (50p):
There are many more ways to cut a pizza into equal pieces. You can find them in Infinite families of monohedral disk tilings by Joel Haddley and Stephen Worsley [1].
You can't use the shape of a new pound coin to cut a pizza though.
Edit: Speaking of new £1 coins, I made this stupid video with Adam "Frownsend" Townsend about them earlier today:

Infinite families of monohedral disk tilings by Joel Haddley and Stephen Worsley. December 2015. [link]

Similar posts

New machine unfriendly £1 coin, pt. 2
New machine unfriendly £1 coin
World Cup stickers 2018, pt. 3
World Cup stickers 2018, pt. 2

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "e" then "q" then "u" then "a" then "t" then "i" then "o" then "n" in the box below (case sensitive):

Archive

Show me a random blog post
 2021 

May 2021

Close encounters of the second kind

Jan 2021

Christmas (2020) is over
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

machine learning royal baby puzzles mathsteroids talking maths in public sound books propositional calculus games national lottery reddit a gamut of games computational complexity chebyshev oeis london underground gaussian elimination logs people maths interpolation misleading statistics harriss spiral london accuracy the aperiodical phd rugby palindromes data visualisation platonic solids flexagons data folding paper weak imposition numbers countdown cross stitch pac-man golden spiral polynomials realhats stirling numbers chess folding tube maps electromagnetic field wave scattering inline code world cup pascal's triangle gerry anderson signorini conditions hexapawn programming final fantasy pi approximation day coins weather station plastic ratio graphs statistics european cup raspberry pi map projections determinants boundary element methods arithmetic bempp big internet math-off matrix of cofactors squares bubble bobble simultaneous equations mathslogicbot news pythagoras matrix of minors bodmas approximation ternary christmas reuleaux polygons stickers convergence manchester recursion curvature geogebra light rhombicuboctahedron radio 4 javascript numerical analysis estimation tennis graph theory matrices video games game of life quadrilaterals triangles go hannah fry dates inverse matrices sport tmip matt parker exponential growth christmas card matrix multiplication python martin gardner php twitter sorting logic dataset preconditioning mathsjam menace fractals braiding trigonometry chalkdust magazine pi hats error bars latex manchester science festival probability ucl pizza cutting binary nine men's morris sobolev spaces asteroids noughts and crosses cambridge draughts football geometry golden ratio captain scarlet royal institution speed guest posts finite element method advent calendar craft wool game show probability frobel dragon curves

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2021