mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Proving a conjecture

 2019-06-19 
Last night at MathsJam, Peter Kagey showed me a conjecture about OEIS sequence A308092.
A308092
The sum of the first \(n\) terms of the sequence is the concatenation of the first \(n\) bits of the sequence read as binary, with \(a(1) = 1\).
1, 2, 3, 7, 14, 28, 56, 112, 224, 448, 896, 1791, 3583, 7166, ...
To understand this definition, let's look at the first few terms of this sequence written in binary:
1, 10, 11, 111, 1110, 11100, 111000, 1110000, 11100000, 111000000, ...
By "the concatenation of the first \(n\) bits of the sequence", it means the first \(n\) binary digits of the whole sequence written in order: 1, then 11, then 110, then 1101, then 11011, then 110111, and so on. So the definition means:
As we know that the sum of the first \(n-1\) terms is the first \(n-1\) digits, we can calculate the third term of this sequence onwards using: "\(a(n)\) is the concatenation of the first \(n\) bits of the sequence subtract concatenation of the first \(n-1\) bits of the sequence":

The conjecture

Peter's conjecture is that the number of 1s in each term is greater than or equal to the number of 1s in the previous term.
I'm going to prove this conjecture. If you'd like to have a try first, stop reading now and come back when you're ready for spoilers. (If you'd like a hint, read the next section then pause again.)

Adding a digit

The third term of the sequence onwards can be calculated by subtracting the first \(n-1\) digits from the first \(n\) digits. If the first \(n-1\) digits form a binary number \(x\), then the first \(n\) digits will be \(2x+d\), where \(d\) is the \(n\)th digit (because moving all the digits to the left one place in binary is multiplying by two).
Therefore the different is \(2x+d-x=x+d\), and so we can work out the \(n\)th term of the sequence by adding the \(n\)th digit in the sequence to the first \(n-1\) digits. (Hat tip to Martin Harris, who spotted this first.)

Carrying

Adding 1 to a binary number the ends in 1 will cause 1 to carry over to the left. This carrying will continue until the 1 is carried into a position containing 0, and after this all the digits to the left of this 0 will remain unchanged.
Therefore adding a digit to the first \(n-1\) digits can only change the digits from the rightmost 0 onwards.

Endings

We can therefore disregard all the digits before the rightmost 0, and look at how the \(n\)th term compares to the \((n-1)\)th term. There are 5 ways in which the first \(n\) digits could end:
We now look at each of these in turn and show that the \(n\)th term will contain at least as many ones at the \((n-1)\)th term.

Case 1: \(00\)

If the first \(n\) digits of the sequence are \(x00\) (a binary number \(x\) followed by two zeros), then the \((n-1)\)th term of the sequence is \(x+0=x\), and the \(n\)th term of the sequence is \(x0+0=x0\). Both \(x\) and \(x0\) contain the same number of ones.

Case 2: \(010\)

If the first \(n\) digits of the sequence are \(x010\), then the \((n-1)\)th term of the sequence is \(x0+1=x1\), and the \(n\)th term of the sequence is \(x01+0=x01\). Both \(x1\) and \(x01\) contain the same number of ones.

Case 3: \(01...10\)

If the first \(n\) digits of the sequence are \(x01...10\), then the \((n-1)\)th term of the sequence is \(x01...1+1=x10...0\), and the \(n\)th term of the sequence is \(x01...10+1=x01...1\). \(x01...1\) contains more ones than \(x10...0\).

Case 4: \(01\)

If the first \(n\) digits of the sequence are \(x01\), then the \((n-1)\)th term of the sequence is \(x+0=x\), and the \(n\)th term of the sequence is \(x0+1=x1\). \(x1\) contains one more one than \(x\).

Case 5: \(01...1\)

If the first \(n\) digits of the sequence are \(x01...1\), then the \((n-1)\)th term of the sequence is \(x01...1+1=x10...0\), and the \(n\)th term of the sequence is \(x01...1+1=x10...0\). Both these contain the same number of ones.

In all five cases, the \(n\)th term contains more ones or an equal number of ones to the \((n-1)\)th term, and so the conjecture is true.
×1      ×1      ×1      ×1      ×1
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "a" then "x" then "e" then "s" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

polynomials realhats fence posts inverse matrices ucl python people maths data arithmetic asteroids matt parker graphs numerical analysis crochet final fantasy dragon curves trigonometry sobolev spaces standard deviation talking maths in public radio 4 finite group pythagoras royal institution sport geogebra bubble bobble gaussian elimination youtube propositional calculus folding tube maps pi approximation day live stream numbers anscombe's quartet edinburgh probability frobel preconditioning european cup guest posts cross stitch reuleaux polygons curvature big internet math-off nine men's morris chalkdust magazine fractals golden spiral machine learning newcastle misleading statistics boundary element methods draughts harriss spiral interpolation national lottery inline code phd convergence matrix of cofactors rhombicuboctahedron electromagnetic field puzzles tennis fonts christmas card countdown approximation weather station weak imposition quadrilaterals books captain scarlet game of life determinants royal baby bodmas hats estimation crossnumbers pascal's triangle recursion london underground video games pac-man raspberry pi mathslogicbot logic london dataset sound sorting ternary game show probability go binary computational complexity bots zines a gamut of games stirling numbers stickers martin gardner craft chess correlation latex logs accuracy cambridge dates friendly squares hannah fry tmip speed advent calendar mean simultaneous equations news map projections crossnumber manchester science festival golden ratio wool databet matrices games errors noughts and crosses turtles crosswords squares light oeis gather town hexapawn statistics kings datasaurus dozen hyperbolic surfaces mathsteroids matrix of minors bempp matrix multiplication runge's phenomenon plastic ratio gerry anderson football php regular expressions flexagons geometry exponential growth pi world cup palindromes braiding manchester reddit christmas the aperiodical 24 hour maths graph theory programming pizza cutting rugby error bars wave scattering triangles mathsjam platonic solids signorini conditions finite element method coins data visualisation javascript chebyshev menace logo folding paper dinosaurs

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025