mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Archive

Show me a random blog post
 2019 
 2018 
 2017 
 2016 
 2015 
 2014 
 2013 
 2012 

Tags

wool national lottery bubble bobble dragon curves craft football sport statistics data plastic ratio fractals inline code games reuleaux polygons php raspberry pi chalkdust magazine propositional calculus christmas approximation rhombicuboctahedron manchester frobel arithmetic menace accuracy folding tube maps logic draughts news weather station aperiodical big internet math-off video games reddit folding paper royal baby javascript noughts and crosses cross stitch geometry world cup london interpolation hexapawn dates trigonometry latex game show probability light mathsteroids pizza cutting probability london underground pythagoras hats sound go error bars people maths machine learning golden spiral sorting nine men's morris chebyshev triangles platonic solids harriss spiral realhats chess final fantasy map projections dataset golden ratio mathslogicbot martin gardner gerry anderson estimation the aperiodical bodmas matt parker puzzles european cup tennis palindromes a gamut of games braiding curvature python electromagnetic field manchester science festival stickers mathsjam christmas card pac-man graph theory radio 4 asteroids twitter oeis polynomials binary programming misleading statistics captain scarlet game of life speed ternary rugby countdown coins flexagons books

Archive

Show me a random blog post
▼ show ▼

Pointless probability

 2013-12-15 
Last week, I was watching Pointless and began wondering how likely it is that a show features four new teams.
On the show, teams are given two chances to get to the final—if they are knocked out before the final round on their first appearance, then they return the following episode. In all the following, I assumed that there was an equal chance of all teams winning.
If there are four new teams on a episode, then one of these will win and not return and the other three will return. Therefore the next episode will have one new team (with probability 1). If there are three new teams on an episode: one of the new teams could win, meaning two teams return and two new teams on the next episode (with probability 3/4); or the returning team could win, meaning that there would only one new team on the next episode. These probabilities, and those for other numbers of teams are shown in the table below:
 No of new teams today
Noof new teams tomorrow
  1234
100\(\frac{1}{4}\)1
20\(\frac{1}{2}\)\(\frac{3}{4}\)0
3\(\frac{3}{4}\)\(\frac{1}{2}\)00
4\(\frac{1}{4}\)000
Call the probability of an episode having one, two, three or four new teams \(P_1\), \(P_2\), \(P_3\) and \(P_4\) respectively. After a few episodes, the following must be satisfied:
$$P_1=\frac{1}{4}P_3+P_4$$ $$P_2=\frac{1}{2}P_2+\frac{3}{4}P_3$$ $$P_3=\frac{3}{4}P_3+\frac{1}{2}P_4$$ $$P_4=\frac{1}{4}P_1$$
And the total probability must be one:
$$P_1+P_2+P_3+P_4=1$$
These simultaneous equations can be solved to find that:
$$P_1=\frac{4}{35}$$ $$P_2=\frac{18}{35}$$ $$P_3=\frac{12}{35}$$ $$P_4=\frac{1}{35}$$
So the probability that all the teams on an episode of Pointless are new is one in 35, meaning that once in every 35 episodes we should expect to see all new teams.
Edit: This blog answered the same question in a slightly different way before I got here.

Similar posts

Countdown probability, pt. 2
Countdown probability
World Cup stickers 2018, pt. 3
World Cup stickers 2018, pt. 2

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "oitar" backwards in the box below (case sensitive):
© Matthew Scroggs 2019