mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Pointless probability

 2013-12-15 
Last week, I was watching Pointless and began wondering how likely it is that a show features four new teams.
On the show, teams are given two chances to get to the final—if they are knocked out before the final round on their first appearance, then they return the following episode. In all the following, I assumed that there was an equal chance of all teams winning.
If there are four new teams on a episode, then one of these will win and not return and the other three will return. Therefore the next episode will have one new team (with probability 1). If there are three new teams on an episode: one of the new teams could win, meaning two teams return and two new teams on the next episode (with probability 3/4); or the returning team could win, meaning that there would only one new team on the next episode. These probabilities, and those for other numbers of teams are shown in the table below:
 No of new teams today
Noof new teams tomorrow
  1234
100\(\frac{1}{4}\)1
20\(\frac{1}{2}\)\(\frac{3}{4}\)0
3\(\frac{3}{4}\)\(\frac{1}{2}\)00
4\(\frac{1}{4}\)000
Call the probability of an episode having one, two, three or four new teams \(P_1\), \(P_2\), \(P_3\) and \(P_4\) respectively. After a few episodes, the following must be satisfied:
$$P_1=\frac{1}{4}P_3+P_4$$ $$P_2=\frac{1}{2}P_2+\frac{3}{4}P_3$$ $$P_3=\frac{3}{4}P_3+\frac{1}{2}P_4$$ $$P_4=\frac{1}{4}P_1$$
And the total probability must be one:
$$P_1+P_2+P_3+P_4=1$$
These simultaneous equations can be solved to find that:
$$P_1=\frac{4}{35}$$ $$P_2=\frac{18}{35}$$ $$P_3=\frac{12}{35}$$ $$P_4=\frac{1}{35}$$
So the probability that all the teams on an episode of Pointless are new is one in 35, meaning that once in every 35 episodes we should expect to see all new teams.
Edit: This blog answered the same question in a slightly different way before I got here.

Similar posts

Countdown probability, pt. 2
Countdown probability
Big Internet Math-Off stickers 2019
World Cup stickers 2018, pt. 3

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "integer" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Jul 2020

Happy √3π-3 Approximation Day!

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

curvature inline code latex platonic solids python statistics accuracy the aperiodical light pythagoras graph theory dataset sport matrix of minors tmip radio 4 people maths countdown mathsjam manchester science festival folding tube maps electromagnetic field talking maths in public world cup braiding stickers boundary element methods oeis quadrilaterals matrix multiplication hannah fry folding paper sobolev spaces dragon curves go game show probability matt parker signorini conditions menace determinants reddit christmas card propositional calculus christmas squares machine learning computational complexity draughts flexagons ternary tennis big internet math-off cross stitch chalkdust magazine craft interpolation palindromes map projections misleading statistics simultaneous equations twitter martin gardner game of life realhats javascript php bubble bobble rhombicuboctahedron pi approximation day gaussian elimination pac-man estimation news triangles frobel captain scarlet nine men's morris binary data visualisation hexapawn a gamut of games fractals noughts and crosses wave scattering raspberry pi geometry numerical analysis games reuleaux polygons sound logic manchester finite element method final fantasy geogebra european cup gerry anderson cambridge matrix of cofactors london royal baby convergence ucl data coins logs programming hats video games rugby error bars polynomials arithmetic approximation preconditioning graphs puzzles advent calendar phd mathslogicbot books pizza cutting trigonometry national lottery plastic ratio inverse matrices probability sorting weak imposition chebyshev london underground wool bodmas exponential growth golden spiral harriss spiral bempp speed mathsteroids pi matrices golden ratio chess weather station dates royal institution asteroids football

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020