mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Logic bot, pt. 2

 2015-03-15 
A few months ago, I set @mathslogicbot (and @logicbot@mathstodon.xyz and @logicbot.bsky.social) going on the long task of tweeting all the tautologies (containing 140 characters or less) in propositional calculus with the symbols \(\neg\) (not), \(\rightarrow\) (implies), \(\leftrightarrow\) (if and only if), \(\wedge\) (and) and \(\vee\) (or). My first post on logic bot contains a full explanation of propositional calculus, formulae and tautologies.

An alternative method

Since writing the original post, I have written an alternative script to generate all the tautologies. In this new method, I run through all possible strings of length 1 made with character in the logical language, then strings of length 2, 3 and so on. The script then checks if they are valid formulae and, if so, if they are tautologies.
In the new script, only formulae where the first appearances of variables are in alphabetical order are considered. This means that duplicate tautologies are removed. For example, \((b\rightarrow(b\wedge a))\) will now be counted as it is the same as \((a\rightarrow(a\wedge b))\).
You can view or download this alternative code on github. All the terms of the sequence that I have calculated so far can be viewed here and the tautologies for these terms are here.

Sequence

One advantage of this method is that it generates the tautologies sorted by the number of symbols they contain, meaning we can generate the sequence whose \(n\)th term is the number of tautologies of length \(n\).
The first ten terms of this sequence are
$$0, 0, 0, 0, 2, 2, 12, 6, 57, 88$$
as there are no tautologies of length less than 5; and, for example two tautologies of length 6 (\((\neg a\vee a)\) and \((a\vee \neg a)\)).
This sequence is listed as A256120 on OEIS.

Properties

There are a few properties of this sequence that can easily be shown. Throughout this section I will use \(a_n\) to represent the \(n\)th term of the sequence.
Firstly, \(a_{n+2}\geq a_n\). This can be explained as follows: let \(A\) be a tautology of length \(n\). \(\neg\neg A\) will be of length \(n+2\) and is logically equivalent to \(A\).
Another property is \(a_{n+4}\geq 2a_n\): given a tautology \(A\) of length \(n\), both \((a\vee A)\) and \((A\vee a)\) will be tautologies of length \(n+4\). Similar properties could be shown for \(\rightarrow\), \(\leftrightarrow\) and \(\wedge\).
Given properties like this, one might predict that the sequence will be increasing (\(a_{n+1}\geq a_n\)). However this is not true as \(a_7\) is 12 and \(a_8\) is only 6. It would be interesting to know at how many points in the sequence there is a term that is less than the previous one. Given the properties above it is reasonable to conjecture that this is the only one.
Edit: The sequence has been published on OEIS!
Edit: Added Mastodon and Bluesky links
×5      ×3      ×3      ×3      ×3
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
Great project! Would be interesting to have a version of this for the sheffer stroke.
om
×3   ×3   ×3   ×1   ×3     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "prime" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

sport pizza cutting php raspberry pi signorini conditions video games dragon curves zines ternary arithmetic go gather town rhombicuboctahedron platonic solids estimation christmas plastic ratio mean live stream squares regular expressions logo palindromes map projections reuleaux polygons propositional calculus javascript tmip trigonometry final fantasy kings talking maths in public sound a gamut of games weak imposition people maths asteroids oeis datasaurus dozen matrix multiplication error bars puzzles sorting curvature correlation tennis nine men's morris big internet math-off sobolev spaces phd bempp friendly squares captain scarlet football crochet mathsjam fractals logs books manchester science festival frobel recursion data braiding convergence ucl craft approximation guest posts preconditioning machine learning interpolation reddit matrix of minors advent calendar logic inverse matrices manchester the aperiodical pac-man countdown simultaneous equations fence posts hannah fry draughts pi crossnumber finite group wave scattering news weather station databet hats edinburgh mathsteroids newcastle finite element method christmas card folding paper crosswords dataset pi approximation day european cup flexagons computational complexity anscombe's quartet chebyshev stirling numbers realhats golden spiral statistics menace world cup latex dates cambridge standard deviation python numbers turtles gaussian elimination coins graph theory wool boundary element methods inline code london bots fonts polynomials gerry anderson runge's phenomenon chess triangles pascal's triangle hexapawn youtube london underground hyperbolic surfaces probability 24 hour maths accuracy bubble bobble noughts and crosses games chalkdust magazine game show probability dinosaurs electromagnetic field radio 4 cross stitch mathslogicbot numerical analysis stickers data visualisation determinants errors game of life golden ratio rugby graphs royal institution bodmas matrices pythagoras matt parker geometry crossnumbers geogebra misleading statistics light folding tube maps speed matrix of cofactors martin gardner exponential growth binary harriss spiral programming royal baby national lottery quadrilaterals

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025