mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Logic bot, pt. 2

 2015-03-15 
A few months ago, I set @mathslogicbot going on the long task of tweeting all the tautologies (containing 140 characters or less) in propositional calculus with the symbols \(\neg\) (not), \(\rightarrow\) (implies), \(\leftrightarrow\) (if and only if), \(\wedge\) (and) and \(\vee\) (or). My first post on logic bot contains a full explanation of propositional calculus, formulae and tautologies.

An alternative method

Since writing the original post, I have written an alternative script to generate all the tautologies. In this new method, I run through all possible strings of length 1 made with character in the logical language, then strings of length 2, 3 and so on. The script then checks if they are valid formulae and, if so, if they are tautologies.
In the new script, only formulae where the first appearances of variables are in alphabetical order are considered. This means that duplicate tautologies are removed. For example, \((b\rightarrow(b\wedge a))\) will now be counted as it is the same as \((a\rightarrow(a\wedge b))\).
You can view or download this alternative code on github. All the terms of the sequence that I have calculated so far can be viewed here and the tautologies for these terms are here.

Sequence

One advantage of this method is that it generates the tautologies sorted by the number of symbols they contain, meaning we can generate the sequence whose \(n\)th term is the number of tautologies of length \(n\).
The first ten terms of this sequence are
$$0, 0, 0, 0, 2, 2, 12, 6, 57, 88$$
as there are no tautologies of length less than 5; and, for example two tautologies of length 6 (\((\neg a\vee a)\) and \((a\vee \neg a)\)).
This sequence is listed as A256120 on OEIS.

Properties

There are a few properties of this sequence that can easily be shown. Throughout this section I will use \(a_n\) to represent the \(n\)th term of the sequence.
Firstly, \(a_{n+2}\geq a_n\). This can be explained as follows: let \(A\) be a tautology of length \(n\). \(\neg\neg A\) will be of length \(n+2\) and is logically equivalent to \(A\).
Another property is \(a_{n+4}\geq 2a_n\): given a tautology \(A\) of length \(n\), both \((a\vee A)\) and \((A\vee a)\) will be tautologies of length \(n+4\). Similar properties could be shown for \(\rightarrow\), \(\leftrightarrow\) and \(\wedge\).
Given properties like this, one might predict that the sequence will be increasing (\(a_{n+1}\geq a_n\)). However this is not true as \(a_7\) is 12 and \(a_8\) is only 6. It would be interesting to know at how many points in the sequence there is a term that is less than the previous one. Given the properties above it is reasonable to conjecture that this is the only one.
Edit: The sequence has been published on OEIS!

Similar posts

Logical contradictions
Logic bot
Interesting tautologies
How OEISbot works

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "naidem" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2021 

Jan 2021

Christmas (2020) is over
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

game show probability latex sorting oeis cross stitch reuleaux polygons machine learning big internet math-off determinants plastic ratio ternary london underground misleading statistics arithmetic geogebra radio 4 asteroids data visualisation gaussian elimination chebyshev nine men's morris logic estimation graph theory folding paper coins geometry menace bodmas accuracy quadrilaterals sport inline code wool hexapawn mathsteroids mathslogicbot cambridge computational complexity phd captain scarlet noughts and crosses tennis triangles bempp palindromes go dates error bars python boundary element methods probability rugby dragon curves pac-man martin gardner golden ratio manchester science festival squares world cup craft php sobolev spaces polynomials realhats wave scattering pizza cutting games golden spiral dataset puzzles data inverse matrices royal institution weather station mathsjam people maths light matt parker approximation ucl braiding javascript news draughts numerical analysis european cup logs preconditioning hannah fry platonic solids talking maths in public pi matrix multiplication graphs pi approximation day twitter curvature manchester chess sound binary programming video games final fantasy gerry anderson flexagons fractals harriss spiral matrix of cofactors propositional calculus raspberry pi matrix of minors matrices reddit the aperiodical london exponential growth countdown books weak imposition frobel statistics signorini conditions christmas card convergence national lottery pythagoras tmip football hats advent calendar rhombicuboctahedron chalkdust magazine trigonometry christmas speed folding tube maps electromagnetic field royal baby simultaneous equations game of life a gamut of games bubble bobble finite element method interpolation map projections stickers

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2021