mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Logic bot, pt. 2

 2015-03-15 
A few months ago, I set @mathslogicbot (and @logicbot@mathstodon.xyz and @logicbot.bsky.social) going on the long task of tweeting all the tautologies (containing 140 characters or less) in propositional calculus with the symbols \(\neg\) (not), \(\rightarrow\) (implies), \(\leftrightarrow\) (if and only if), \(\wedge\) (and) and \(\vee\) (or). My first post on logic bot contains a full explanation of propositional calculus, formulae and tautologies.

An alternative method

Since writing the original post, I have written an alternative script to generate all the tautologies. In this new method, I run through all possible strings of length 1 made with character in the logical language, then strings of length 2, 3 and so on. The script then checks if they are valid formulae and, if so, if they are tautologies.
In the new script, only formulae where the first appearances of variables are in alphabetical order are considered. This means that duplicate tautologies are removed. For example, \((b\rightarrow(b\wedge a))\) will now be counted as it is the same as \((a\rightarrow(a\wedge b))\).
You can view or download this alternative code on github. All the terms of the sequence that I have calculated so far can be viewed here and the tautologies for these terms are here.

Sequence

One advantage of this method is that it generates the tautologies sorted by the number of symbols they contain, meaning we can generate the sequence whose \(n\)th term is the number of tautologies of length \(n\).
The first ten terms of this sequence are
$$0, 0, 0, 0, 2, 2, 12, 6, 57, 88$$
as there are no tautologies of length less than 5; and, for example two tautologies of length 6 (\((\neg a\vee a)\) and \((a\vee \neg a)\)).
This sequence is listed as A256120 on OEIS.

Properties

There are a few properties of this sequence that can easily be shown. Throughout this section I will use \(a_n\) to represent the \(n\)th term of the sequence.
Firstly, \(a_{n+2}\geq a_n\). This can be explained as follows: let \(A\) be a tautology of length \(n\). \(\neg\neg A\) will be of length \(n+2\) and is logically equivalent to \(A\).
Another property is \(a_{n+4}\geq 2a_n\): given a tautology \(A\) of length \(n\), both \((a\vee A)\) and \((A\vee a)\) will be tautologies of length \(n+4\). Similar properties could be shown for \(\rightarrow\), \(\leftrightarrow\) and \(\wedge\).
Given properties like this, one might predict that the sequence will be increasing (\(a_{n+1}\geq a_n\)). However this is not true as \(a_7\) is 12 and \(a_8\) is only 6. It would be interesting to know at how many points in the sequence there is a term that is less than the previous one. Given the properties above it is reasonable to conjecture that this is the only one.
Edit: The sequence has been published on OEIS!
Edit: Added Mastodon and Bluesky links
×5      ×3      ×3      ×3      ×3
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
Great project! Would be interesting to have a version of this for the sheffer stroke.
om
×3   ×3   ×3   ×1   ×3     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "integer" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

zines matrix multiplication crossnumber wool martin gardner squares noughts and crosses platonic solids london underground national lottery rugby data visualisation mean bempp oeis sorting chess fence posts nine men's morris advent calendar latex databet matrix of cofactors misleading statistics the aperiodical electromagnetic field simultaneous equations raspberry pi light plastic ratio kings regular expressions standard deviation gaussian elimination guest posts reuleaux polygons frobel talking maths in public numbers speed bubble bobble cross stitch pac-man games royal institution arithmetic london numerical analysis crochet a gamut of games sound crossnumbers graphs polynomials accuracy radio 4 finite group fonts puzzles matrices pi approximation day craft finite element method hannah fry mathslogicbot golden spiral matrix of minors final fantasy menace error bars palindromes manchester science festival chalkdust magazine mathsteroids matt parker recursion 24 hour maths crosswords sobolev spaces graph theory rhombicuboctahedron captain scarlet sport binary hexapawn countdown geometry python determinants phd preconditioning computational complexity errors data correlation newcastle gather town dataset weather station convergence go live stream world cup edinburgh anscombe's quartet quadrilaterals datasaurus dozen pascal's triangle machine learning estimation video games bodmas christmas programming dates bots runge's phenomenon ucl mathsjam european cup pi game of life dinosaurs probability weak imposition exponential growth cambridge fractals christmas card dragon curves pizza cutting big internet math-off curvature propositional calculus trigonometry game show probability flexagons realhats pythagoras golden ratio draughts asteroids folding tube maps manchester reddit harriss spiral tennis news hats chebyshev gerry anderson javascript stickers friendly squares statistics stirling numbers boundary element methods approximation geogebra logs map projections football hyperbolic surfaces braiding logic folding paper tmip royal baby ternary books people maths interpolation inline code triangles wave scattering youtube signorini conditions inverse matrices coins php logo turtles

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025