mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2020-05-15 
This is a post I wrote for The Aperiodical's Big Lock-Down Math-Off. You can vote for (or against) me here until 9am on Sunday...
Recently, I came across a surprising fact: if you take any quadrilateral and join the midpoints of its sides, then you will form a parallelogram.
The blue quadrilaterals are all parallelograms.
The first thing I thought when I read this was: "oooh, that's neat." The second thing I thought was: "why?" It's not too difficult to show why this is true; you might like to pause here and try to work out why yourself before reading on...
To show why this is true, I started by letting \(\mathbf{a}\), \(\mathbf{b}\), \(\mathbf{c}\) and \(\mathbf{d}\) be the position vectors of the vertices of our quadrilateral. The position vectors of the midpoints of the edges are the averages of the position vectors of the two ends of the edge, as shown below.
The position vectors of the corners and the midpoints of the edges.
We want to show that the orange and blue vectors below are equal (as this is true of opposite sides of a parallelogram).
We can work these vectors out: the orange vector is$$\frac{\mathbf{d}+\mathbf{a}}2-\frac{\mathbf{a}+\mathbf{b}}2=\frac{\mathbf{d}-\mathbf{b}}2,$$ and the blue vector is$$\frac{\mathbf{c}+\mathbf{d}}2-\frac{\mathbf{b}+\mathbf{c}}2=\frac{\mathbf{d}-\mathbf{b}}2.$$
In the same way, we can show that the other two vectors that make up the inner quadrilateral are equal, and so the inner quadrilateral is a parallelogram.

Going backwards

Even though I now saw why the surprising fact was true, my wondering was not over. I started to think about going backwards.
It's easy to see that if the outer quadrilateral is a square, then the inner quadrilateral will also be a square.
If the outer quadrilateral is a square, then the inner quadrilateral is also a square.
It's less obvious if the reverse is true: if the inner quadrilateral is a square, must the outer quadrilateral also be a square? At first, I thought this felt likely to be true, but after a bit of playing around, I found that there are many non-square quadrilaterals whose inner quadrilaterals are squares. Here are a few:
A kite, a trapezium, a delta kite, an irregular quadrilateral and a cross-quadrilateral whose innner quadrilaterals are all a square.
There are in fact infinitely many quadrilaterals whose inner quadrilateral is a square. You can explore them in this Geogebra applet by dragging around the blue point:
As you drag the point around, you may notice that you can't get the outer quadrilateral to be a non-square rectangle (or even a non-square parallelogram). I'll leave you to figure out why not...

Similar posts

Mathsteroids
Interesting tautologies
Big Internet Math-Off stickers 2019
Runge's Phenomenon

Comments

Comments in green were written by me. Comments in blue were not written by me.
Nice post! Just a minor nitpick, I found it weird that you say "In the same way, we can show that the other two vectors that make up the inner quadrilateral are equal, and so the inner quadrilateral is a parallelogram."
This is true but it's not needed (it's automatically true), you have in fact already proved that this is a parallelogram, by proving that two opposite sides have same length and are parallel (If you prove that the vectors EF and GH have the same coordinates, then EFHG is a parallelogram.)
Vivien
                 Reply
mscroggs.co.uk is interesting as far as MATHEMATICS IS CONCERNED!
DEB JYOTI MITRA
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "b" then "i" then "s" then "e" then "c" then "t" in the box below (case sensitive):

Archive

Show me a random blog post
 2021 

Jan 2021

Christmas (2020) is over
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

wave scattering interpolation bempp logic computational complexity speed pi platonic solids hexapawn royal baby news numerical analysis graphs harriss spiral convergence quadrilaterals gerry anderson craft exponential growth plastic ratio flexagons matrix multiplication electromagnetic field statistics error bars countdown fractals sobolev spaces triangles game show probability estimation light tennis manchester science festival python noughts and crosses hats asteroids data mathsteroids chebyshev final fantasy menace logs books dates football a gamut of games determinants map projections royal institution machine learning london underground golden ratio phd game of life data visualisation gaussian elimination radio 4 advent calendar chalkdust magazine matrices approximation javascript pi approximation day programming trigonometry realhats folding tube maps matt parker bubble bobble national lottery pythagoras manchester binary dragon curves misleading statistics dataset curvature probability sound pizza cutting ucl latex cross stitch mathsjam big internet math-off cambridge tmip simultaneous equations games inverse matrices london wool boundary element methods palindromes php chess ternary talking maths in public accuracy braiding captain scarlet rhombicuboctahedron inline code video games golden spiral squares bodmas finite element method twitter signorini conditions puzzles people maths christmas card matrix of minors weak imposition propositional calculus the aperiodical nine men's morris coins frobel draughts martin gardner stickers pac-man folding paper matrix of cofactors world cup reddit arithmetic go reuleaux polygons rugby sport polynomials sorting preconditioning weather station hannah fry geogebra raspberry pi mathslogicbot oeis european cup graph theory geometry christmas

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2021