mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Logical contradictions

 2016-10-08 
During my Electromagnetic Field talk this year, I spoke about @mathslogicbot, my Twitter bot that is working its way through the tautologies in propositional calculus. My talk included my conjecture that the number of tautologies of length \(n\) is an increasing sequence (except when \(n=8\)). After my talk, Henry Segerman suggested that I also look at the number of contradictions of length \(n\) to look for insights.
A contradiction is the opposite of a tautology: it is a formula that is False for every assignment of truth values to the variables. For example, here are a few contradictions:
$$\neg(a\leftrightarrow a)$$ $$\neg(a\rightarrow a)$$ $$(\neg a\wedge a)$$ $$(\neg a\leftrightarrow a)$$
The first eleven terms of the sequence whose \(n\)th term is the number of contradictions of length \(n\) are:
$$0, 0, 0, 0, 0, 6, 2, 20, 6, 127, 154$$
This sequence is A277275 on OEIS. A list of contractions can be found here.
For the same reasons as the sequence of tautologies, I would expect this sequence to be increasing. Surprisingly, it is not increasing for small values of \(n\), but I again conjecture that it is increasing after a certain point.

Properties of the sequences

There are some properties of the two sequences that we can show. Let \(a(n)\) be the number of tautolgies of length \(n\) and let \(b(n)\) be the number of contradictions of length \(n\).
First, the number of tautologies and contradictions, \(a(n)+b(n)\), (A277276) is an increasing sequence. This is due to the facts that \(a(n+1)\geq b(n)\) and \(b(n+1)\geq a(n)\), as every tautology of length \(n\) becomes a contraction of length \(n+1\) by appending a \(\neg\) to be start and vice versa.
This implies that for each \(n\), at most one of \(a\) and \(b\) can be decreasing at \(n\), as if both were decreasing, then \(a+b\) would be decreasing. Sadly, this doesn't seem to give us a way to prove the conjectures, but it is a small amount of progress towards them.

Similar posts

Logic bot, pt. 2
Logic bot
Interesting tautologies
How OEISbot works

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "nogaced" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2021 

Jan 2021

Christmas (2020) is over
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

logs computational complexity graphs menace platonic solids final fantasy dates php weak imposition determinants european cup phd palindromes cross stitch christmas dragon curves hats braiding fractals rhombicuboctahedron boundary element methods estimation raspberry pi mathslogicbot logic tmip accuracy martin gardner matrix multiplication chalkdust magazine pizza cutting probability realhats programming harriss spiral arithmetic mathsjam trigonometry london geogebra manchester science festival javascript game of life people maths nine men's morris go speed bubble bobble reddit pi matrix of minors oeis numerical analysis simultaneous equations chebyshev triangles squares sport world cup stickers error bars matrices tennis flexagons curvature royal baby graph theory royal institution matrix of cofactors rugby ucl geometry a gamut of games light golden spiral gerry anderson finite element method pac-man inverse matrices wave scattering games signorini conditions polynomials data visualisation the aperiodical wool inline code talking maths in public plastic ratio exponential growth folding paper cambridge hannah fry reuleaux polygons christmas card python hexapawn sound asteroids pi approximation day captain scarlet news machine learning video games game show probability radio 4 misleading statistics preconditioning latex folding tube maps twitter manchester big internet math-off binary bempp coins noughts and crosses golden ratio data dataset convergence map projections ternary propositional calculus matt parker books puzzles pythagoras weather station bodmas london underground national lottery sobolev spaces statistics draughts chess gaussian elimination mathsteroids football electromagnetic field countdown quadrilaterals frobel sorting craft approximation advent calendar interpolation

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2021