mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Tube map stellated rhombicuboctahedron

 2015-03-24 
This is the fourth post in a series of posts about tube map folding.
A while ago, I made this (a stellated rhombicuboctahedron):
Here are some hastily typed instructions for Matt Parker, who is making one at this month's Maths Jam. Other people are welcome to follow these instructions too.

You will need

Making a module

First, take a tube map and fold the cover over. This will ensure that your shape will have tube (map and not index) on the outside and you will have pages to tuck your tabs between later.
Now fold one corner diagonally across to another corner. It does not matter which diagonal you chose for the first piece but after this all following pieces must be the same as the first.
Now fold the overlapping bit back over the top.
Turn it over and fold this overlap over too.
You have made one module.
You will need 48 of these and some glue.

Putting it together

By slotting three or four of these modules together, you can make a pyramid with a triangle or square as its base.
A stellated rhombicuboctahedron is a rhombicuboctahedron with a pyramid, or stellation on each face. In other words, you now need to build a rhombicuboctahedron with the bases of pyramids like these. A rhombicuboctahedron looks like this:
en.wiki User Cyp, CC BY-SA 3.0
More usefully, its net looks like this:
To build a stellated rhombicuboctahedron, make this net, but with each shape as the base of a pyramid. This is what it will look like 6/48 tube maps in:
If you make on of these, please tweet me a photo so I can see it!
Edit: Proof that these instructions can be followed:
Previous post in series
Tube map Platonic solids, pt. 3
This is the fourth post in a series of posts about tube map folding.
Next post in series
Tube map kaleidocycles

Similar posts

Tube map Platonic solids, pt. 2
Tube map kaleidocycles
Tube map Platonic solids, pt. 3
Electromagnetic Field talk

Comments

Comments in green were written by me. Comments in blue were not written by me.
I wish you'd make the final stellation of the rhombicuboctahedron! And show us! I know the shapes of the faces but have been stuck two years on the assembly!
Roberts, David
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "tneitouq" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Jul 2020

Happy √3π-3 Approximation Day!

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

palindromes data visualisation sport chalkdust magazine london sound countdown mathsteroids bubble bobble phd platonic solids nine men's morris people maths video games trigonometry reddit estimation interpolation finite element method realhats chebyshev graphs game of life pi approximation day manchester science festival python pac-man world cup polynomials graph theory misleading statistics inverse matrices latex weather station game show probability frobel geometry gerry anderson draughts rhombicuboctahedron inline code golden ratio tennis golden spiral approximation mathsjam wave scattering sorting hannah fry data javascript wool signorini conditions talking maths in public asteroids computational complexity light martin gardner electromagnetic field national lottery triangles arithmetic london underground fractals speed matrix of minors football final fantasy menace radio 4 dataset raspberry pi chess stickers european cup logic reuleaux polygons cambridge folding tube maps harriss spiral gaussian elimination dragon curves go braiding numerical analysis the aperiodical logs news map projections oeis weak imposition books big internet math-off noughts and crosses quadrilaterals tmip manchester dates probability advent calendar pythagoras hats craft binary sobolev spaces statistics machine learning matrix multiplication christmas ucl accuracy bodmas rugby convergence exponential growth bempp coins folding paper matt parker geogebra hexapawn mathslogicbot ternary pi captain scarlet royal institution squares games programming boundary element methods matrix of cofactors matrices php pizza cutting propositional calculus twitter error bars royal baby flexagons curvature simultaneous equations preconditioning cross stitch puzzles a gamut of games determinants plastic ratio christmas card

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020