mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Tube map stellated rhombicuboctahedron

 2015-03-24 
This is the fourth post in a series of posts about tube map folding.
A while ago, I made this (a stellated rhombicuboctahedron):
Here are some hastily typed instructions for Matt Parker, who is making one at this month's Maths Jam. Other people are welcome to follow these instructions too.

You will need

Making a module

First, take a tube map and fold the cover over. This will ensure that your shape will have tube (map and not index) on the outside and you will have pages to tuck your tabs between later.
Now fold one corner diagonally across to another corner. It does not matter which diagonal you chose for the first piece but after this all following pieces must be the same as the first.
Now fold the overlapping bit back over the top.
Turn it over and fold this overlap over too.
You have made one module.
You will need 48 of these and some glue.

Putting it together

By slotting three or four of these modules together, you can make a pyramid with a triangle or square as its base.
A stellated rhombicuboctahedron is a rhombicuboctahedron with a pyramid, or stellation on each face. In other words, you now need to build a rhombicuboctahedron with the bases of pyramids like these. A rhombicuboctahedron looks like this:
en.wiki User Cyp, CC BY-SA 3.0
More usefully, its net looks like this:
To build a stellated rhombicuboctahedron, make this net, but with each shape as the base of a pyramid. This is what it will look like 6/48 tube maps in:
If you make on of these, please tweet me a photo so I can see it!
Edit: Proof that these instructions can be followed:
Previous post in series
Tube map Platonic solids, pt. 3
This is the fourth post in a series of posts about tube map folding.
Next post in series
Tube map kaleidocycles

Similar posts

Tube map Platonic solids, pt. 2
Tube map kaleidocycles
Tube map Platonic solids, pt. 3
Electromagnetic Field talk

Comments

Comments in green were written by me. Comments in blue were not written by me.
I wish you'd make the final stellation of the rhombicuboctahedron! And show us! I know the shapes of the faces but have been stuck two years on the assembly!
Roberts, David
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "s" then "e" then "g" then "m" then "e" then "n" then "t" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

php hexapawn determinants phd countdown books geometry light london arithmetic realhats approximation golden spiral signorini conditions gerry anderson inverse matrices wool rhombicuboctahedron draughts mathsjam python noughts and crosses christmas card matrix of minors people maths bubble bobble advent calendar reddit flexagons matrix multiplication programming propositional calculus weather station game of life javascript go triangles rugby world cup manchester science festival bempp royal baby captain scarlet braiding machine learning big internet math-off craft folding tube maps golden ratio game show probability stickers manchester cambridge probability simultaneous equations interpolation talking maths in public raspberry pi oeis menace logic electromagnetic field map projections matt parker asteroids preconditioning hannah fry radio 4 pac-man reuleaux polygons christmas numerical analysis final fantasy mathslogicbot london underground tennis plastic ratio football video games statistics curvature sound coins latex error bars hats ucl fractals national lottery news mathsteroids dataset data speed dragon curves platonic solids pythagoras computational complexity european cup inline code gaussian elimination estimation chalkdust magazine data visualisation polynomials pizza cutting a gamut of games ternary wave scattering trigonometry matrices frobel graph theory misleading statistics dates sport sobolev spaces folding paper royal institution accuracy finite element method the aperiodical weak imposition binary twitter harriss spiral puzzles palindromes matrix of cofactors tmip nine men's morris sorting chebyshev chess cross stitch martin gardner games bodmas boundary element methods

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020