mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2017-01-13 
I wrote this post with, and after much discussion with Adam Townsend. It also appeared on the Chalkdust Magazine blog.
Recently, Colin "IceCol" Beveridge blogged about something that's been irking him for a while: those annoying social media posts that tell you to work out a sum, such as \(3-3\times6+2\), and state that only $n$% of people will get it right (where \(n\) is quite small). Or as he calls it "fake maths".
A classic example of "fake maths".
This got me thinking about everyone's least favourite primary school acronym: BODMAS (sometimes known as BIDMAS, or PEMDAS if you're American). As I'm sure you've been trying to forget, BODMAS stands for "Brackets, (to the power) Of, Division, Multiplication, Addition, Subtraction" and tells you in which order the operations should be performed.
Now, I agree that we all need to do operations in the same order (just imagine trying to explain your working out to someone who uses BADSOM!) but BODMAS isn't the order mathematicians use. It's simply wrong. Take the sum \(4-3+1\) as an example. Anyone can tell you that the answer is 2. But BODMAS begs to differ: addition comes first, giving 0!
The problem here is that in reality, we treat addition and subtraction as equally important, so sums involving just these two operations are calculated from left-to-right. This caveat is quite a lot more to remember on top of BODMAS, but there's actually no need: Doing all the subtractions before additions will always give you the same answer as going from left-to-right. The same applies to division and multiplication, but luckily these two are in the correct order already in BODMAS (but no luck if you're using PEMDAS).
So instead of BODMAS, we should be using BODMSA. But that's unpronounceable, so instead we suggest that from now on you use MEDUSA. That's right, MEDUSA:
This is big news. MEDUSA vs BODMAS could be this year's pi vs tau... Although it's not actually the biggest issue when considering sums like \(3-3\times6+2\).
The real problem with \(3-3\times6+2\) is that it is written in a purposefully confusing and ambiguous order. Compare the following sums:
$$3-3\times6+2$$ $$3+2-3\times6$$ $$3+2-(3\times6)$$
In the latter two, it is much harder to make a mistake in the order of operations, because the correct order is much closer to normal left-to-right reading order, helping the reader to avoid common mistakes. Good mathematics is about good communication, not tricking people. This is why questions like this are "fake maths": real mathematicians would never ask them. If we take the time to write clearly, then I bet more than \(n\)% of people will be able get the correct answer.

Similar posts

Christmas card 2020
Christmas card 2019
TMiP 2019 treasure punt
Harriss and other spirals

Comments

Comments in green were written by me. Comments in blue were not written by me.
We use BEDMAS in Canada (Brackets, Exponents, Division, Multiplication, Addition, Subtraction) But we are taught that you do whichever comes first from left to right if they are the addition/ subtraction or multiplication/division. So it could also be BEMDAS, or BEMDSA, or BEDMSA. It just uses the order the that rolls off the tongue more.
Brodaha
                 Reply
we use BOMAL - Brackets, Overs, Multiplication/Division, Addition/Subtraction, Left to Right. I agree they need to know negative numbers to fully understand and use BODMAS, BIDMAS, BEDMAS, PODMAS, PIDMAS, PEDMAS, BOMAL or MEDUSA
tiny
                 Reply
If we could just teach young children about positive and negative numbers, then this wouldn't be a problem. Subtraction is just the addition of negative numbers. Division is also the multiplication of fractions. This is why BOMA/PEMA is the optimal method. I think MEDUSA is very creative, though.
Blan
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "enisoc" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2021 

May 2021

Close encounters of the second kind

Jan 2021

Christmas (2020) is over
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

big internet math-off gerry anderson realhats coins inline code mathsjam probability matrix of cofactors tmip dataset wave scattering christmas card european cup polynomials weak imposition javascript computational complexity sorting twitter craft python cambridge misleading statistics talking maths in public royal institution ternary golden spiral platonic solids reddit map projections flexagons accuracy pascal's triangle national lottery programming curvature electromagnetic field news finite element method golden ratio martin gardner go exponential growth data visualisation a gamut of games tennis hexapawn world cup matrices people maths asteroids hannah fry fractals gaussian elimination captain scarlet preconditioning inverse matrices geogebra propositional calculus menace final fantasy matrix of minors statistics nine men's morris interpolation triangles error bars quadrilaterals rugby chebyshev recursion royal baby speed sport determinants mathslogicbot reuleaux polygons weather station latex binary books video games phd rhombicuboctahedron manchester mathsteroids chess radio 4 cross stitch palindromes trigonometry pizza cutting hats logs stickers bubble bobble game show probability light pac-man squares matrix multiplication chalkdust magazine sobolev spaces dates raspberry pi pythagoras countdown games boundary element methods manchester science festival machine learning graphs ucl folding paper frobel plastic ratio data football christmas the aperiodical sound harriss spiral arithmetic graph theory guest posts game of life matt parker numbers london underground numerical analysis london braiding noughts and crosses bempp advent calendar stirling numbers bodmas geometry signorini conditions folding tube maps approximation dragon curves pi php wool convergence simultaneous equations pi approximation day estimation oeis logic puzzles draughts

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2021