# Blog

## Archive

Show me a random blog post**2019**

### Jun 2019

Proving a conjecture### Apr 2019

Harriss and other spirals### Mar 2019

realhats### Jan 2019

Christmas (2018) is over**2018**

**2017**

**2016**

**2015**

**2014**

**2013**

**2012**

## Tags

platonic solids game of life accuracy countdown manchester craft harriss spiral stickers coins binary the aperiodical cross stitch a gamut of games geometry noughts and crosses palindromes rugby national lottery raspberry pi games mathsjam radio 4 draughts triangles folding paper data world cup interpolation trigonometry video games python captain scarlet menace propositional calculus european cup football dataset books fractals london underground hats christmas card golden spiral error bars dragon curves frobel ternary final fantasy weather station wool bubble bobble curvature bodmas sound misleading statistics gerry anderson dates php programming chebyshev machine learning martin gardner statistics reuleaux polygons probability estimation royal baby realhats go light news graph theory pizza cutting mathslogicbot nine men's morris braiding flexagons pythagoras javascript golden ratio hexapawn mathsteroids oeis approximation puzzles aperiodical big internet math-off twitter asteroids matt parker logic game show probability pac-man reddit electromagnetic field inline code map projections polynomials sport rhombicuboctahedron folding tube maps christmas plastic ratio london chalkdust magazine tennis speed manchester science festival chess sorting people maths latex arithmetic**2017-01-13**

I wrote this post with, and after much discussion with Adam Townsend. It also appeared on the Chalkdust Magazine blog.

Recently, Colin "IceCol" Beveridge blogged about something that's been irking him for a while: those annoying social media posts that tell you to work out a sum, such as \(3-3\times6+2\), and state that only $n$% of people will get it right (where \(n\) is quite small). Or as he calls it "fake maths".

This got me thinking about everyone's least favourite primary school acronym: BODMAS (sometimes known as BIDMAS, or PEMDAS if you're American). As I'm sure you've been trying to forget, BODMAS stands for "

**B**rackets, (to the power)**O**f,**D**ivision,**M**ultiplication,**A**ddition,**S**ubtraction" and tells you in which order the operations should be performed.Now, I agree that we all need to do operations in the same order (just imagine trying to explain your working out to someone who uses

*BADSOM*!) but BODMAS isn't the order mathematicians use. It's simply wrong. Take the sum \(4-3+1\) as an example. Anyone can tell you that the answer is 2. But BODMAS begs to differ: addition comes first, giving 0!The problem here is that in reality, we treat addition and subtraction as equally important, so sums involving just these two operations are calculated from left-to-right. This caveat is quite a lot more to remember on top of BODMAS, but there's actually no need: Doing all the subtractions before additions will always give you the same answer as going from left-to-right. The same applies to division and multiplication, but luckily these two are in the correct order already in BODMAS (but no luck if you're using PEMDAS).

So instead of BODMAS, we should be using

*BODMSA*. But that's unpronounceable, so instead we suggest that from now on you use**MEDUSA**. That's right,**MEDUSA**:**M**abano (*brackets*in Swahili)**E**xponentiation**D**ivision**U**kubuyabuyelela (*multiplication*in Zulu)**S**ubtraction**A**ddition

This is big news. MEDUSA vs BODMAS could be this year's pi vs tau... Although it's not actually the biggest issue when considering sums like \(3-3\times6+2\).

The real problem with \(3-3\times6+2\) is that it is written in a purposefully confusing and ambiguous order. Compare the following sums:

$$3-3\times6+2$$ $$3+2-3\times6$$ $$3+2-(3\times6)$$
In the latter two, it is much harder to make a mistake in the order of operations, because the correct order is much closer to normal left-to-right reading order, helping the reader to avoid common mistakes. Good mathematics is about good communication, not tricking people. This is why questions like this are "fake maths": real mathematicians would never ask them. If we take the time to write clearly, then I bet more than \(n\)% of people will be able get the correct answer.

### Similar posts

Harriss and other spirals | Christmas card 2018 | Christmas card 2017 | MENACE at Manchester Science Festival |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

**2017-11-15**

**Add a Comment**

2017-11-27Brodaha