mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Blog

Dragon curves

 2016-03-30 
Take a piece of paper. Fold it in half in the same direction many times. Now unfold it. What pattern will the folds make?
I first found this question in one of Martin Gardner's books. At first, you might that the answer will be simple, but if you look at the shapes made for a few folds, you will see otherwise:
Dragon curves of orders 1 to 6.
The curves formed are called dragon curves as they allegedly look like dragons with smoke rising from their nostrils. I'm not sure I see the resemblance:
An order 10 dragon curve.
As you increase the order of the curve (the number of times the paper was folded), the dragon curve squiggles across more of the plane, while never crossing itself. In fact, if the process was continued forever, an order infinity dragon curve would cover the whole plane, never crossing itself.
This is not the only way to cover a plane with dragon curves: the curves tessellate.
When tiled, this picture demonstrates how dragon curves tessellate. For a demonstration, try obtaining infinite lives...
Dragon curves of different orders can also fit together:

Drawing dragon curves

To generate digital dragon curves, first notice that an order \(n\) curve can be made from two order \(n-1\) curves:
This can easily be seen to be true if you consider folding paper: If you fold a strip of paper in half once, then \(n-1\) times, each half of the strip will have made an order \(n-1\) dragon curve. But the whole strip has been folded \(n\) times, so is an order \(n\) dragon curve.
Because of this, higher order dragons can be thought of as lots of lower order dragons tiled together. An the infinite dragon curve is actually equivalent to tiling the plane with a infinite number of dragons.
If you would like to create your own dragon curves, you can download the Python code I used to draw them from GitHub. If you are more of a thinker, then you might like to ponder what difference it would make if the folds used to make the dragon were in different directions.

Similar posts

Dragon curves II
PhD thesis, chapter 2
Visualising MENACE's learning
Harriss and other spirals

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "w" then "i" then "d" then "t" then "h" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Nov 2020

Christmas (2020) is coming!

Jul 2020

Happy √3+1 Approximation Day!

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

world cup noughts and crosses latex braiding hexapawn mathslogicbot curvature christmas binary programming gaussian elimination light preconditioning php ternary inline code map projections matrix of minors chebyshev people maths sound signorini conditions sobolev spaces stickers royal institution weather station ucl matrix multiplication mathsjam accuracy gerry anderson chalkdust magazine data visualisation talking maths in public pi error bars royal baby speed golden ratio dates cross stitch arithmetic pi approximation day draughts countdown puzzles logic bodmas golden spiral london underground quadrilaterals harriss spiral twitter books simultaneous equations python pizza cutting final fantasy estimation matrix of cofactors the aperiodical triangles electromagnetic field tennis flexagons rhombicuboctahedron raspberry pi video games determinants exponential growth hannah fry propositional calculus sport realhats captain scarlet manchester science festival squares a gamut of games news plastic ratio wave scattering convergence folding paper graph theory statistics rugby geometry geogebra platonic solids bempp probability dragon curves christmas card inverse matrices hats palindromes folding tube maps manchester cambridge pythagoras interpolation tmip nine men's morris pac-man fractals polynomials dataset craft wool big internet math-off european cup approximation machine learning menace chess trigonometry bubble bobble coins graphs national lottery sorting weak imposition oeis london martin gardner boundary element methods games advent calendar finite element method game of life data logs javascript computational complexity misleading statistics matt parker radio 4 phd mathsteroids reddit asteroids football game show probability frobel matrices go numerical analysis reuleaux polygons

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020