mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Dragon curves

 2016-03-30 
Take a piece of paper. Fold it in half in the same direction many times. Now unfold it. What pattern will the folds make?
I first found this question in one of Martin Gardner's books. At first, you might that the answer will be simple, but if you look at the shapes made for a few folds, you will see otherwise:
Dragon curves of orders 1 to 6.
The curves formed are called dragon curves as they allegedly look like dragons with smoke rising from their nostrils. I'm not sure I see the resemblance:
An order 10 dragon curve.
As you increase the order of the curve (the number of times the paper was folded), the dragon curve squiggles across more of the plane, while never crossing itself. In fact, if the process was continued forever, an order infinity dragon curve would cover the whole plane, never crossing itself.
This is not the only way to cover a plane with dragon curves: the curves tessellate.
When tiled, this picture demonstrates how dragon curves tessellate. For a demonstration, try obtaining infinite lives...
Dragon curves of different orders can also fit together:

Drawing dragon curves

To generate digital dragon curves, first notice that an order \(n\) curve can be made from two order \(n-1\) curves:
This can easily be seen to be true if you consider folding paper: If you fold a strip of paper in half once, then \(n-1\) times, each half of the strip will have made an order \(n-1\) dragon curve. But the whole strip has been folded \(n\) times, so is an order \(n\) dragon curve.
Because of this, higher order dragons can be thought of as lots of lower order dragons tiled together. An the infinite dragon curve is actually equivalent to tiling the plane with a infinite number of dragons.
If you would like to create your own dragon curves, you can download the Python code I used to draw them from GitHub. If you are more of a thinker, then you might like to ponder what difference it would make if the folds used to make the dragon were in different directions.

Similar posts

Dragon curves II
PhD thesis, chapter 2
Visualising MENACE's learning
Harriss and other spirals

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "htdiw" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

chalkdust magazine preconditioning python machine learning puzzles estimation matrix of cofactors twitter realhats bempp go draughts inverse matrices binary rhombicuboctahedron wool advent calendar a gamut of games folding paper national lottery wave scattering golden ratio polynomials ucl tmip folding tube maps accuracy data signorini conditions mathslogicbot the aperiodical weather station bodmas plastic ratio misleading statistics royal baby hannah fry fractals martin gardner matrix of minors pac-man london final fantasy graphs coins graph theory flexagons dataset geometry christmas card sorting triangles stickers finite element method games hexapawn game show probability cambridge manchester cross stitch chess phd light electromagnetic field approximation big internet math-off error bars platonic solids data visualisation php interpolation talking maths in public mathsjam weak imposition determinants christmas frobel palindromes mathsteroids royal institution simultaneous equations speed books world cup manchester science festival tennis ternary bubble bobble inline code raspberry pi logs hats dragon curves countdown logic curvature exponential growth map projections rugby craft gaussian elimination sound oeis numerical analysis reddit people maths pythagoras latex captain scarlet video games arithmetic nine men's morris matrices propositional calculus european cup braiding reuleaux polygons gerry anderson statistics trigonometry game of life golden spiral boundary element methods harriss spiral chebyshev convergence sport probability dates radio 4 matrix multiplication london underground menace programming computational complexity asteroids pizza cutting football javascript sobolev spaces news noughts and crosses matt parker

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020