mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Tube map kaleidocycles

 2016-09-06 
This is the fifth post in a series of posts about tube map folding.
After my talk at Electromagnetic Field 2014, I was sent a copy of MC Escher Kaleidocycles by Doris Schattschneider and Wallace Walker (thanks Bob!). A kaleidocycle is a bit like a 3D flexagon: it can be flexed to reveal different parts of itself.
In this blog post, I will tell you how to make a kaleidocycle from tube maps.

You will need

Making the modules

First, fold the cover of a tube map over. This will allow you to have the tube map (and not just its cover) on the faces of your shape.
With the side you want to see facing down, fold the map so that two opposite corners touch.
For this step, there is a choice of which two corners to connect: leading to a right-handed and a left-handed piece. You should make 6 of each type for your kaleidocycle.
Finally, fold the overhanding bits over to complete your module.
The folds you made when connecting opposite corners will need to fold both ways when you flex your shape, so it is worth folding them both ways a few times now before continuing.

Putting it together

Once you have made 12 modules (with 6 of each handedness), you are ready to put the kaleidocycle together.
Take two tube maps of each handedness and tuck them together in a line. Each map is tucked into one of the opposite handedness.
The four triangles across the middle form a net of a tetrahedron. Complete the tetrahedron by putting the last tab into the first triangle. Glue these together.
Take two more tube maps of the opposite handedness to those at the top of the tetrahedron. Fit them into the two triangles poking out of the top of the tetrahedron to make a second tetrahedron.
Repeat this until you have five connected tetrahedra. Finally, connect the triangles poking out of the top and the bottom to make your kaleidocycle.
Previous post in series
Tube map stellated rhombicuboctahedron
This is the fifth post in a series of posts about tube map folding.

Similar posts

Tube map Platonic solids, pt. 3
Tube map stellated rhombicuboctahedron
Electromagnetic Field talk
Tube map Platonic solids, pt. 2

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "kite" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Jul 2020

Happy τ+e-6 Approximation Day!

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

hats data visualisation dataset simultaneous equations determinants game of life preconditioning twitter frobel propositional calculus arithmetic london underground games christmas convergence cambridge game show probability manchester science festival sobolev spaces golden spiral boundary element methods accuracy coins triangles final fantasy books stickers ternary flexagons binary mathsjam tennis rugby python squares bempp matrix of cofactors curvature realhats chalkdust magazine programming talking maths in public sorting hannah fry logs puzzles go radio 4 inverse matrices pi approximation day ucl graphs dates matrices world cup platonic solids pac-man wool noughts and crosses a gamut of games chess folding tube maps phd inline code signorini conditions london harriss spiral dragon curves captain scarlet php royal baby matt parker hexapawn asteroids gerry anderson draughts christmas card chebyshev interpolation error bars rhombicuboctahedron finite element method mathslogicbot menace geogebra pizza cutting reuleaux polygons speed folding paper bodmas football electromagnetic field approximation graph theory bubble bobble manchester the aperiodical tmip palindromes golden ratio cross stitch craft numerical analysis statistics weather station probability estimation mathsteroids data big internet math-off gaussian elimination matrix multiplication map projections geometry pi royal institution latex national lottery sound light european cup polynomials misleading statistics reddit advent calendar javascript people maths fractals sport martin gardner news wave scattering braiding video games quadrilaterals countdown exponential growth plastic ratio pythagoras machine learning raspberry pi weak imposition oeis matrix of minors nine men's morris computational complexity trigonometry logic

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020