mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Tube map kaleidocycles

 2016-09-06 
This is the fifth post in a series of posts about tube map folding.
After my talk at Electromagnetic Field 2014, I was sent a copy of MC Escher Kaleidocycles by Doris Schattschneider and Wallace Walker (thanks Bob!). A kaleidocycle is a bit like a 3D flexagon: it can be flexed to reveal different parts of itself.
In this blog post, I will tell you how to make a kaleidocycle from tube maps.

You will need

Making the modules

First, fold the cover of a tube map over. This will allow you to have the tube map (and not just its cover) on the faces of your shape.
With the side you want to see facing down, fold the map so that two opposite corners touch.
For this step, there is a choice of which two corners to connect: leading to a right-handed and a left-handed piece. You should make 6 of each type for your kaleidocycle.
Finally, fold the overhanding bits over to complete your module.
The folds you made when connecting opposite corners will need to fold both ways when you flex your shape, so it is worth folding them both ways a few times now before continuing.

Putting it together

Once you have made 12 modules (with 6 of each handedness), you are ready to put the kaleidocycle together.
Take two tube maps of each handedness and tuck them together in a line. Each map is tucked into one of the opposite handedness.
The four triangles across the middle form a net of a tetrahedron. Complete the tetrahedron by putting the last tab into the first triangle. Glue these together.
Take two more tube maps of the opposite handedness to those at the top of the tetrahedron. Fit them into the two triangles poking out of the top of the tetrahedron to make a second tetrahedron.
Repeat this until you have five connected tetrahedra. Finally, connect the triangles poking out of the top and the bottom to make your kaleidocycle.
Previous post in series
Tube map stellated rhombicuboctahedron
This is the fifth post in a series of posts about tube map folding.

Similar posts

Tube map Platonic solids, pt. 3
Tube map stellated rhombicuboctahedron
Electromagnetic Field talk
Tube map Platonic solids, pt. 2

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "nogaced" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2019 

Jul 2019

Big Internet Math-Off stickers 2019

Jun 2019

Proving a conjecture

Apr 2019

Harriss and other spirals

Mar 2019

realhats

Jan 2019

Christmas (2018) is over
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

stickers twitter pythagoras reddit menace draughts golden ratio electromagnetic field approximation fractals national lottery big internet math-off video games folding paper asteroids the aperiodical games braiding martin gardner palindromes books rugby binary javascript probability chalkdust magazine estimation european cup cross stitch curvature platonic solids propositional calculus bodmas wool light misleading statistics football chebyshev accuracy news sound interpolation machine learning inline code noughts and crosses pizza cutting mathsjam harriss spiral plastic ratio latex puzzles craft countdown programming bubble bobble arithmetic python london weather station reuleaux polygons manchester polynomials mathsteroids triangles flexagons ternary game of life captain scarlet christmas card royal baby frobel dragon curves geometry nine men's morris people maths trigonometry world cup sorting speed a gamut of games chess folding tube maps dataset raspberry pi manchester science festival realhats go error bars hexapawn gerry anderson logic christmas data radio 4 golden spiral map projections rhombicuboctahedron dates london underground game show probability matt parker tennis mathslogicbot pac-man statistics graph theory coins php final fantasy sport hats oeis

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2019