mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2020-02-16 
This is the fifth post in a series of posts about my PhD thesis.
In the fifth and final chapter of my thesis, we look at how boundary conditions can be weakly imposed on the Helmholtz equation.

Analysis

As in chapter 4, we must adapt the analysis of chapter 3 to apply to Helmholtz problems. The boundary operators for the Helmholtz equation satisfy less strong conditions than the operators for Laplace's equation (for Laplace's equation, the operators satisfy a condition called coercivity; for Helmholtz, the operators satisfy a weaker condition called Gårding's inequality), making proving results about Helmholtz problem harder.
After some work, we are able to prove an a priori error bound (with \(a=\tfrac32\) for the spaces we use):
$$\left\|u-u_h\right\|\leqslant ch^{a}\left\|u\right\|$$

Numerical results

As in the previous chapters, we use Bempp to show that computations with this method match the theory.
The error of our approximate solutions of a Dirichlet (left) and mixed Dirichlet–Neumann problems in the exterior of a sphere with meshes with different values of \(h\). The dashed lines show order \(\tfrac32\) convergence.

Wave scattering

Boundary element methods are often used to solve Helmholtz wave scattering problems. These are problems in which a sound wave is travelling though a medium (eg the air), then hits an object: you want to know what the sound wave that scatters off the object looks like.
If there are multiple objects that the wave is scattering off, the boundary element method formulation can get quite complicated. When using weak imposition, the formulation is simpler: this one advantage of this method.
The following diagram shows a sound wave scattering off a mixure of sound-hard and sound-soft spheres. Sound-hard objects reflect sound well, while sound-soft objects absorb it well.
A sound wave scattering off a mixture of sound-hard (white) and sound-soft (black) spheres.
If you are trying to design something with particular properties—for example, a barrier that absorbs sound—you may want to solve lots of wave scattering problems on an object on some objects with various values taken for their reflective properties. This type of problem is often called an inverse problem.
For this type of problem, weakly imposing boundary conditions has advantages: the discretisation of the Calderón projector can be reused for each problem, and only the terms due to the weakly imposed boundary conditions need to be recalculated. This is an advantages as the boundary condition terms are much less expensive (ie they use much less time and memory) to calculate than the Calderón term that is reused.

This concludes chapter 5, the final chapter of my thesis. Why not celebrate reaching the end by cracking open the following figure before reading the concluding blog post.
An acoustic wave scattering off a sound-hard champagne bottle and a sound-soft cork.
Previous post in series
This is the fifth post in a series of posts about my PhD thesis.
Next post in series
×3      ×3      ×3      ×3      ×3
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "prime" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

arithmetic map projections runge's phenomenon finite group probability gather town game of life european cup golden spiral reuleaux polygons javascript graph theory christmas card folding paper crochet reddit numbers ucl wool recursion manchester the aperiodical matt parker final fantasy big internet math-off phd geogebra inverse matrices databet golden ratio weak imposition palindromes logic cross stitch numerical analysis trigonometry geometry gaussian elimination datasaurus dozen computational complexity christmas hyperbolic surfaces python edinburgh crossnumber matrix multiplication bubble bobble accuracy logo flexagons tmip convergence raspberry pi hannah fry people maths nine men's morris guest posts fence posts hexapawn sport dinosaurs light chess talking maths in public menace sound fonts polynomials pi chebyshev latex errors wave scattering newcastle royal institution puzzles hats squares countdown dragon curves football boundary element methods sorting error bars youtube game show probability platonic solids bodmas zines interpolation captain scarlet games mathslogicbot data martin gardner chalkdust magazine tennis rugby pizza cutting mathsteroids gerry anderson pac-man stirling numbers live stream matrix of cofactors dataset regular expressions world cup national lottery curvature friendly squares noughts and crosses misleading statistics mathsjam matrices standard deviation stickers pythagoras simultaneous equations mean pi approximation day data visualisation anscombe's quartet books preconditioning graphs statistics go folding tube maps cambridge coins triangles royal baby video games programming rhombicuboctahedron london underground harriss spiral frobel bots turtles draughts quadrilaterals php correlation fractals estimation exponential growth signorini conditions craft electromagnetic field machine learning finite element method matrix of minors braiding pascal's triangle crossnumbers weather station speed dates bempp realhats london 24 hour maths approximation sobolev spaces oeis a gamut of games kings plastic ratio manchester science festival propositional calculus logs crosswords binary determinants ternary news radio 4 advent calendar inline code asteroids

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025