mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Approximating π

 2022-03-14 
A few weekends ago, I visited Houghton-le-Spring to spend two days helping with an attempt to compute the first 100 decimal places of π by hand. You can watch Matt Parker's video about our calculation to find out about our method and how many correct decimal places we achieved.
One of my calculations
Spending two days computing an approximation of π led me to wonder how accurate calculations using various approximations of π would be.
One nice way to visualise this is to ask: what is the largest circle whose area can be correctly computed to the nearest mm² when using a chosen approximation of π? In this blog post, I'll answer this question for a range of approximations of π.

3

First up, how about the least accurate approximation we could possibly use: π = 3.
Using this approximation, the areas of circles with a radius of up to 1.88mm could be calculated correctly to the nearest mm². That's a circle about the size of an ant.

Pi Day: 3.14

Today is Pi Day, as in the date format M.DD, today's date is the first three digits of π. Using this approximation, circles with a radius of up to 17.7mm or 1.77cm can be calculated correctly to the nearest mm². That's a circle about the size of my thumb.

Pi Approximation Day: 22/7

In the date format DD/M, 22 July gives an approximation of π that is more accurate than 3.14. Using this approximation, circles with a radius of up to 19.8mm or 1.98cm can be calculated correctly to the nearest mm². That's a slightly bigger circle that's still about the size of my thumb.

Our approximation

In Houghton-le-Spring, our final computed value was 3.1415926535886829815214... The first 11 decimal places of this are correct.
Using this approximation, circles with a radius of up to \(6.71\times10^5\)mm or 671m can be calculated correctly to the nearest mm². That's a circle about the size of Regent's park.

The 100 decimal places we were aiming for

If we'd avoided any mistakes in Hougton-le-Spring, we would've obtained the first 100 decimal places of π. Using the first 100 decimal places of π, circles with a radius of up to \(7.8\times10^9\)mm or 7800km can be calculated correctly to the nearest mm². That's a circle just bigger than the Earth.

The 527 decimal places that William Shanks computed

In 1873, William Shanks computed 707 decimal places of π in Houghton-le-Spring. His first 527 decimal places were correct. Using his approximation, circles with a radius of up to approximately \(10^{263}\)mm or \(10^{244}\) light years can be calculated correctly to the nearest mm². The observable universe is only around \(10^{10}\) light years wide.
That's a quite big circle.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
When does "MM" give 14 for the month?
Steve Spivey
      ×1      ×1     Reply
I wonder if energy can be put into motion with pi, so that would be a lot of theoretical energy
Willem
            ×1     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "htdiw" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

pascal's triangle chess hats geogebra squares mathsteroids logic hannah fry a gamut of games numerical analysis martin gardner youtube misleading statistics turtles video games football standard deviation convergence go weather station finite group newcastle world cup datasaurus dozen harriss spiral numbers folding tube maps pizza cutting quadrilaterals realhats inverse matrices oeis curvature sorting pi approximation day the aperiodical manchester raspberry pi programming crossnumber rhombicuboctahedron stickers polynomials electromagnetic field propositional calculus plastic ratio books stirling numbers royal baby python national lottery mathslogicbot edinburgh logs chebyshev statistics chalkdust magazine golden ratio rugby signorini conditions coins braiding reddit ucl 24 hour maths asteroids anscombe's quartet draughts pac-man matt parker craft european cup flexagons estimation arithmetic machine learning speed cross stitch frobel manchester science festival gaussian elimination approximation wave scattering triangles weak imposition dataset christmas card pythagoras simultaneous equations dinosaurs boundary element methods gather town folding paper finite element method games talking maths in public geometry errors trigonometry pi game of life graph theory map projections wool accuracy menace light preconditioning binary bodmas cambridge matrix of minors matrix multiplication puzzles crochet palindromes exponential growth tmip determinants data visualisation people maths inline code golden spiral big internet math-off graphs london final fantasy countdown matrix of cofactors gerry anderson noughts and crosses dates christmas news sound live stream data advent calendar royal institution platonic solids zines phd captain scarlet hyperbolic surfaces javascript dragon curves databet fence posts sobolev spaces sport interpolation fonts matrices nine men's morris reuleaux polygons recursion tennis runge's phenomenon computational complexity correlation mathsjam bubble bobble ternary hexapawn latex bempp london underground logo fractals guest posts game show probability radio 4 php probability error bars mean

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024