mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Approximating π

 2022-03-14 
A few weekends ago, I visited Houghton-le-Spring to spend two days helping with an attempt to compute the first 100 decimal places of π by hand. You can watch Matt Parker's video about our calculation to find out about our method and how many correct decimal places we achieved.
One of my calculations
Spending two days computing an approximation of π led me to wonder how accurate calculations using various approximations of π would be.
One nice way to visualise this is to ask: what is the largest circle whose area can be correctly computed to the nearest mm² when using a chosen approximation of π? In this blog post, I'll answer this question for a range of approximations of π.

3

First up, how about the least accurate approximation we could possibly use: π = 3.
Using this approximation, the areas of circles with a radius of up to 1.88mm could be calculated correctly to the nearest mm². That's a circle about the size of an ant.

Pi Day: 3.14

Today is Pi Day, as in the date format M.DD, today's date is the first three digits of π. Using this approximation, circles with a radius of up to 17.7mm or 1.77cm can be calculated correctly to the nearest mm². That's a circle about the size of my thumb.

Pi Approximation Day: 22/7

In the date format DD/M, 22 July gives an approximation of π that is more accurate than 3.14. Using this approximation, circles with a radius of up to 19.8mm or 1.98cm can be calculated correctly to the nearest mm². That's a slightly bigger circle that's still about the size of my thumb.

Our approximation

In Houghton-le-Spring, our final computed value was 3.1415926535886829815214... The first 11 decimal places of this are correct.
Using this approximation, circles with a radius of up to \(6.71\times10^5\)mm or 671m can be calculated correctly to the nearest mm². That's a circle about the size of Regent's park.

The 100 decimal places we were aiming for

If we'd avoided any mistakes in Hougton-le-Spring, we would've obtained the first 100 decimal places of π. Using the first 100 decimal places of π, circles with a radius of up to \(7.8\times10^9\)mm or 7800km can be calculated correctly to the nearest mm². That's a circle just bigger than the Earth.

The 527 decimal places that William Shanks computed

In 1873, William Shanks computed 707 decimal places of π in Houghton-le-Spring. His first 527 decimal places were correct. Using his approximation, circles with a radius of up to approximately \(10^{263}\)mm or \(10^{244}\) light years can be calculated correctly to the nearest mm². The observable universe is only around \(10^{10}\) light years wide.
That's a quite big circle.
×3      ×3      ×3      ×3      ×3
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
When does "MM" give 14 for the month?
Steve Spivey
×3   ×4   ×4   ×3   ×4     Reply
I wonder if energy can be put into motion with pi, so that would be a lot of theoretical energy
Willem
×3   ×3   ×3   ×3   ×4     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "l" then "i" then "n" then "e" then "a" then "r" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

map projections pascal's triangle golden spiral frobel finite element method graph theory matrix of minors signorini conditions reuleaux polygons weather station fonts probability pythagoras trigonometry convergence phd propositional calculus asteroids sorting game of life matt parker computational complexity curvature golden ratio finite group approximation dragon curves chalkdust magazine captain scarlet data visualisation final fantasy manchester books triangles numerical analysis rhombicuboctahedron light youtube radio 4 zines hannah fry harriss spiral geometry matrices the aperiodical inverse matrices reddit craft people maths christmas quadrilaterals braiding machine learning databet realhats games world cup polynomials wool standard deviation flexagons stirling numbers newcastle stickers plastic ratio martin gardner tmip gather town coins royal institution pac-man edinburgh regular expressions news misleading statistics accuracy puzzles game show probability pi gaussian elimination 24 hour maths numbers big internet math-off go draughts estimation mathsjam anscombe's quartet sport cross stitch exponential growth dinosaurs chebyshev crossnumber fractals advent calendar javascript bubble bobble pi approximation day raspberry pi geogebra programming ucl platonic solids video games a gamut of games binary friendly squares correlation menace interpolation manchester science festival graphs pizza cutting boundary element methods crochet tennis recursion bots simultaneous equations statistics fence posts london underground php turtles electromagnetic field hats matrix multiplication squares guest posts speed wave scattering hexapawn runge's phenomenon folding paper logo mathsteroids crosswords palindromes london chess rugby errors gerry anderson datasaurus dozen bodmas sobolev spaces data logic logs dates matrix of cofactors folding tube maps kings arithmetic hyperbolic surfaces error bars determinants python noughts and crosses oeis preconditioning christmas card weak imposition latex crossnumbers inline code ternary dataset royal baby live stream national lottery european cup cambridge bempp nine men's morris countdown mean mathslogicbot talking maths in public sound football

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025