mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

World Cup stickers 2018, pt. 2

 2018-06-16 
This year, like every World Cup year, I've been collecting stickers to fill the official Panini World Cup sticker album. Back in March, I calculated that I should expect it to cost £268.99 to fill this year's album (if I order the last 50 stickers). As of 6pm yesterday, I need 47 stickers to complete the album (and have placed an order on the Panini website for these).

So... How much did it cost?

In total, I have bought 1781 stickers (including the 47 I ordered) at a cost of £275.93. The plot below shows the money spent against the number of stickers stuck in, compared with the what I predicted in March.
To create this plot, I've been keeping track of exactly which stickers were in each pack I bought. Using this data, we can look for a few more things. If you want to play with the data yourself, there's a link at the bottom to download it.

Swaps

The bar chart below shows the number of copies of each sticker I got (excluding the 47 that I ordered). Unsurprisingly, it looks a lot like random noise.
The sticker I got most copies of was sticker 545, showing Panana player Armando Cooper.
Armando Cooper on sticker 545
I got swaps of 513 different stickers, meaning I'm only 169 stickers short of filling a second album.

First pack of all swaps

Everyone who has every done a sticker book will remember the awful feeling you get when you first get a pack of all swaps. For me, the first time this happened was the 50th pack. The plot below shows when the first pack of all swaps occurred in 500,000 simulations.
Looks like I was really quite unlucky to get a pack of all swaps so soon.

Duplicates in a pack

In all the 345 packs that I bought, there wasn't a single pack that contained two copies of the same sticker. In fact, I don't remember ever getting two of the same sticker in a pack. For a while I've been wondering if this is because Panini ensure that packs don't contain duplicates, or if it's simply very unlikely that they do.
If it was down to unlikeliness, the probability of having no duplicates in one pack would be:
\begin{align} \mathbb{P}(\text{no duplicates in a pack}) &= 1 \times\frac{681}{682}\times\frac{680}{682}\times\frac{679}{682}\times\frac{678}{682}\\ &= 0.985 \end{align}
and the probability of none of my 345 containing a duplicate would be:
\begin{align} \mathbb{P}(\text{no duplicates in 345 packs}) &= 0.985^{345}\\ &= 0.00628 \end{align}
This is very very small, so it's safe to conclude that Panini do indeed ensure that packs do not contain duplicates.

The data

If you'd like to have a play with the data yourself, you can download it here. Let me know if you do anything with it...

Similar posts

World Cup stickers 2018, pt. 3
World Cup stickers 2018
World Cup stickers
Euro 2016 stickers

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "median" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Jul 2020

Happy τ-ϕ-2 Approximation Day!

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

hats numerical analysis weak imposition light tmip inline code statistics approximation mathsteroids christmas card bodmas dates martin gardner coins phd determinants interpolation latex platonic solids pi approximation day go polynomials pi chalkdust magazine hexapawn frobel convergence oeis golden spiral computational complexity python reddit squares asteroids braiding speed binary manchester science festival dragon curves books ucl dataset game of life noughts and crosses map projections sobolev spaces sorting matt parker wool countdown harriss spiral mathsjam plastic ratio logs chebyshev gaussian elimination arithmetic christmas cambridge raspberry pi folding tube maps flexagons talking maths in public triangles graphs php london underground palindromes chess puzzles graph theory geometry cross stitch captain scarlet simultaneous equations preconditioning pythagoras royal baby matrix of minors matrix of cofactors javascript misleading statistics game show probability geogebra world cup video games menace folding paper nine men's morris football logic weather station error bars matrix multiplication a gamut of games rugby london stickers twitter craft accuracy wave scattering pizza cutting games big internet math-off data probability news boundary element methods quadrilaterals national lottery signorini conditions data visualisation gerry anderson propositional calculus people maths tennis electromagnetic field estimation inverse matrices advent calendar bempp reuleaux polygons trigonometry exponential growth sound sport the aperiodical ternary european cup curvature machine learning finite element method royal institution mathslogicbot golden ratio pac-man manchester draughts hannah fry matrices realhats bubble bobble fractals final fantasy rhombicuboctahedron radio 4 programming

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020