mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

World Cup stickers 2018, pt. 2

 2018-06-16 
This year, like every World Cup year, I've been collecting stickers to fill the official Panini World Cup sticker album. Back in March, I calculated that I should expect it to cost £268.99 to fill this year's album (if I order the last 50 stickers). As of 6pm yesterday, I need 47 stickers to complete the album (and have placed an order on the Panini website for these).

So... How much did it cost?

In total, I have bought 1781 stickers (including the 47 I ordered) at a cost of £275.93. The plot below shows the money spent against the number of stickers stuck in, compared with the what I predicted in March.
To create this plot, I've been keeping track of exactly which stickers were in each pack I bought. Using this data, we can look for a few more things. If you want to play with the data yourself, there's a link at the bottom to download it.

Swaps

The bar chart below shows the number of copies of each sticker I got (excluding the 47 that I ordered). Unsurprisingly, it looks a lot like random noise.
The sticker I got most copies of was sticker 545, showing Panana player Armando Cooper.
Armando Cooper on sticker 545
I got swaps of 513 different stickers, meaning I'm only 169 stickers short of filling a second album.

First pack of all swaps

Everyone who has every done a sticker book will remember the awful feeling you get when you first get a pack of all swaps. For me, the first time this happened was the 50th pack. The plot below shows when the first pack of all swaps occurred in 500,000 simulations.
Looks like I was really quite unlucky to get a pack of all swaps so soon.

Duplicates in a pack

In all the 345 packs that I bought, there wasn't a single pack that contained two copies of the same sticker. In fact, I don't remember ever getting two of the same sticker in a pack. For a while I've been wondering if this is because Panini ensure that packs don't contain duplicates, or if it's simply very unlikely that they do.
If it was down to unlikeliness, the probability of having no duplicates in one pack would be:
\begin{align} \mathbb{P}(\text{no duplicates in a pack}) &= 1 \times\frac{681}{682}\times\frac{680}{682}\times\frac{679}{682}\times\frac{678}{682}\\ &= 0.985 \end{align}
and the probability of none of my 345 containing a duplicate would be:
\begin{align} \mathbb{P}(\text{no duplicates in 345 packs}) &= 0.985^{345}\\ &= 0.00628 \end{align}
This is very very small, so it's safe to conclude that Panini do indeed ensure that packs do not contain duplicates.

The data

If you'd like to have a play with the data yourself, you can download it here. Let me know if you do anything with it...
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "sexa" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

sobolev spaces matrix of cofactors menace nine men's morris dragon curves phd folding paper fonts data visualisation european cup hats raspberry pi errors palindromes plastic ratio hexapawn manchester ternary wave scattering dataset mathsjam 24 hour maths crosswords video games mathslogicbot graph theory fence posts noughts and crosses news pac-man platonic solids matt parker php reuleaux polygons pi approximation day accuracy hyperbolic surfaces pascal's triangle draughts the aperiodical royal institution pythagoras signorini conditions rugby polynomials live stream realhats weak imposition ucl games radio 4 runge's phenomenon graphs fractals books braiding numerical analysis gather town christmas card matrices friendly squares rhombicuboctahedron sport propositional calculus logs pi programming matrix multiplication bots chebyshev kings bempp flexagons go talking maths in public youtube interpolation hannah fry anscombe's quartet numbers geometry mathsteroids machine learning turtles craft coins statistics sorting asteroids bubble bobble game of life chalkdust magazine newcastle probability crossnumber simultaneous equations geogebra wool inline code game show probability stirling numbers advent calendar map projections computational complexity matrix of minors databet speed stickers reddit golden spiral tennis london zines cross stitch football mean logo dates royal baby edinburgh javascript misleading statistics determinants manchester science festival frobel bodmas arithmetic guest posts london underground latex big internet math-off golden ratio gerry anderson oeis captain scarlet final fantasy standard deviation correlation pizza cutting finite element method data chess finite group cambridge light a gamut of games squares triangles gaussian elimination puzzles weather station recursion trigonometry preconditioning martin gardner sound exponential growth logic boundary element methods binary countdown national lottery harriss spiral people maths folding tube maps datasaurus dozen estimation approximation convergence quadrilaterals regular expressions dinosaurs curvature christmas tmip python inverse matrices electromagnetic field crossnumbers error bars crochet world cup

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025