mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2023-09-02 
This week, I've been at Talking Maths in Public (TMiP) in Newcastle. TMiP is a conference for anyone involved in—or interested in getting involved in—any sort of maths outreach, enrichment, or public engagement activity. It was really good, and I highly recommend coming to TMiP 2025.
The Saturday morning at TMiP was filled with a choice of activities, including a puzzle hunt written by me: the Tyne trial. At the start/end point of the Tyne trial, there was a locked box with a combination lock. In order to work out the combination for the lock, you needed to find some clues hidden around Newcastle and solve a few puzzles.
Every team taking part was given a copy of these instructions. Some people attended TMiP virtually, so I also made a version of the Tyne trial that included links to Google Street View and photos from which the necessary information could be obtained. You can have a go at this at mscroggs.co.uk/tyne-trial/remote. For anyone who wants to try the puzzles without searching through virtual Newcastle, the numbers that you needed to find are:
The solutions to the puzzles and the final puzzle are below. If you want to try the puzzles for yourself, do that now before reading on.

Puzzle for clue #2: Palindromes

We are going to start with a number then repeat the following process: if the number you have is a palindrome, stop; otherwise add the number to itself backwards. For example, if we start with 219, then we do: $$219\xrightarrow{+912}1131\xrightarrow{+1311}2442.$$ If you start with the number \(10b+9\) (ie 59), what palindrome do you get?
(If you start with 196, it is unknown whether you will ever get a palindrome.)

Show solution

Puzzle for clue #3: Mostly ones

There are 12 three-digit numbers whose digits are 1, 2, 3, 4, or 5 with exactly two digits that are ones. How many \(c\)-digit (ie 1838-digit) numbers are there whose digits are 1, 2, 3, 4, or 5 with exactly \(c-1\) digits (ie 1837) that are ones?

Show solution

Puzzle for clue #4: is it an integer?

The largest value of \(n\) such that \((n!-2)/(n-2)\) is an integer is 4. What is the largest value of \(n\) such that \((n!-d)/(n-d)\) (ie \((n!-1931)/(n-1931)\)) is an integer?

Show solution

Puzzle for clue #5: How many steps?

We are going to start with a number then repeat the following process: if we've reached 0, stop; otherwise subtract the smallest prime factor of the current number. For example, if we start with 9, then we do: $$9\xrightarrow{-3}6\xrightarrow{-2}4\xrightarrow{-2}2\xrightarrow{-2}0.$$ It took 4 steps to get to 0. What is the smallest starting number such that this process will take \(e\) (ie 1619) steps?

Show solution

Puzzle for clue #6: Four-digit number

I thought of a four digit number. I removed a digit to make a three digit number, then added my two numbers together. The result is \(200f+127\) (ie 9727). What was my original number?

Show solution

Puzzle for clue #7: Dice

If you roll two six-sided fair dice, the most likely total is 7. What is the most likely total if you rolled \(1470+g\) (ie 2470) dice?

Show solution

The final puzzle

The final puzzle involves using the answers to the five puzzles to find the four digit code that opens the box (and the physical locked box that was in the library on Saturday. To give hints to this code, each clue was given a "score".
The score of a number is the number of values of \(i\) such that the \(i\)th digit of the code is a factor of the \(i\)th digit of the number. For example, if the code was 1234, then the score of the number 3654 would be 3 (because 1 is a factor of 3; 2 is a factor of 6; and 4 is a factor of 4).
The seven clues to the final code are:

Show solution

×5      ×4      ×4      ×4      ×4
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "s" then "e" then "g" then "m" then "e" then "n" then "t" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

bubble bobble hats mean matrix of minors graphs european cup final fantasy video games hannah fry latex harriss spiral game show probability rhombicuboctahedron quadrilaterals realhats palindromes draughts curvature recursion kings boundary element methods inline code news rugby standard deviation matrices football games approximation asteroids braiding error bars craft coins world cup ternary newcastle flexagons chebyshev friendly squares wave scattering logo gather town raspberry pi geometry finite element method pac-man python reuleaux polygons matrix of cofactors gerry anderson oeis reddit menace mathsjam christmas weather station regular expressions golden spiral royal institution talking maths in public bodmas trigonometry inverse matrices pizza cutting electromagnetic field noughts and crosses arithmetic london underground dataset preconditioning fonts frobel misleading statistics crossnumbers light london a gamut of games signorini conditions countdown sound stickers captain scarlet manchester science festival plastic ratio chalkdust magazine big internet math-off royal baby numbers logic statistics fractals crossnumber go platonic solids mathsteroids game of life 24 hour maths tennis logs accuracy radio 4 polynomials runge's phenomenon gaussian elimination dates pi approximation day stirling numbers cambridge phd speed triangles numerical analysis cross stitch php people maths graph theory ucl mathslogicbot databet advent calendar guest posts fence posts javascript folding paper weak imposition sorting squares christmas card map projections turtles pythagoras bempp convergence crochet propositional calculus dinosaurs hyperbolic surfaces wool matrix multiplication binary errors simultaneous equations anscombe's quartet determinants data visualisation correlation data dragon curves golden ratio programming puzzles geogebra books datasaurus dozen estimation nine men's morris exponential growth matt parker edinburgh sobolev spaces tmip zines pascal's triangle folding tube maps live stream chess bots machine learning pi manchester crosswords finite group national lottery probability computational complexity martin gardner sport the aperiodical youtube interpolation hexapawn

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025