mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Big Internet Math-Off stickers 2019

 2019-07-03 
This year's Big Internet Math-Off is now underway with 15 completely new contestants (plus one returning contender). As I'm not the returning contestant, I haven't been spending my time preparing my pitches. Instead, I've spent my time making an unofficial Big Internet Math-Off sticker book.
To complete the sticker book, you will need to collect 162 different stickers. Every day, you will be given a pack of 5 stickers; there are also some bonus packs available if you can find them (Hint: keep reading).

How many stickers will I need?

Using the same method as I did for last year's World Cup sticker book, you can work out that the expected number of stickers needed to finish the sticker book:
If you have already stuck \(n\) stickers into your album, then the probability that the next sticker you get is new is
$$\frac{162-n}{162}.$$
The probability that the second sticker you get is the next new sticker is
$$\mathbb{P}(\text{next sticker is not new})\times\mathbb{P}(\text{sticker after next is new})$$ $$=\frac{n}{162}\times\frac{162-n}{162}.$$
Following the same method, we can see that the probability that the \(i\)th sticker you buy is the next new sticker is
$$\left(\frac{n}{162}\right)^{i-1}\times\frac{162-n}{162}.$$
Using this, we can calculate the expected number of stickers you will need to buy until you find a new one:
$$\sum_{i=1}^{\infty}i \left(\frac{162-n}{162}\right) \left(\frac{n}{162}\right)^{i-1} = \frac{162}{162-n}$$
Therefore, to get all 162 stickers, you should expect to buy
$$\sum_{n=0}^{161}\frac{162}{162-n} = 918 \text{ stickers}.$$
Using just your daily packs, it will take you until the end of the year to collect this many stickers. Of course, you'll only need to collect this many if you don't swap your duplicate stickers.

How many stickers will I need if I swap?

To work out the expected number of stickers stickers you'd need if you swap, let's first think about two people who want to complete their stickerbooks together. If there are \(a\) stickers that both collectors need and \(b\) stickers that one collector has and the other one needs, then let \(E_{a,b}\) be the expected number of stickers they need to finish their sticker books. The next sticker they get could be one of three things:
Therefore, the expected number of stickers they need to complete their sticker books is
$$E_{a,b}=1+\frac{a}{162}E_{a-1,b+1}+\frac{b}{162}E_{a,b-1}+\frac{162-a-b}{162}E_{a,b}.$$
This can be rearranged to give
$$E_{a,b}= \frac{162}{a+b}+ \frac{a}{a+b}E_{a-1,b+1} +\frac{b}{a+b}E_{a,b-1} $$
We know that $E_{0,0}=0$ (as if \(a=0\) and \(b=0\), both collectors have already finished their sticker books). Using this and the formula above, we can work out that
$$E_{0,1}=162+E_{0,0}=162$$ $$E_{1,0}=162+E_{0,1}=324$$ $$E_{0,2}=\frac{162}2+E_{0,1}=243$$ $$E_{1,1}=\frac{162}2+\frac12E_{0,2}+\frac12E_{1,0}=364.5$$
... and so on until we find that \(E_{162,0}=1269\), and so our collectors should expect to collect 634 stickers each to complete their sticker books.
For three people, we can work out that if there are \(a\) stickers that all three need, \(b\) stickers that two need, and \(c\) stickers that one needs, then
$$ E_{a,b,c} = \frac{162}{a+b+c}+ \frac{a}{a+b+c}E_{a-1,b+1,c} +\frac{b}{a+b+c}E_{a,b-1,c+1} +\frac{c}{a+b+c}E_{a,b,c-1}. $$
In the same way as for two people, we find that \(E_{162,0,0}=1572\), and so our collectors should expect to collect 524 stickers each to complete their sticker books.
Doing the same thing for four people gives an expected 463 stickers required each.
After four people, however, the Python code I wrote to do these calculations takes too long to run, so instead I approximated the numbers by simulating 500 groups of \(n\) people collecting stickers, and taking the average number of stickers they needed. The results are shown in the graph below.
The red dots are the expected values we calculated exactly, and the blue crosses are the simulated values. It looks like you'll need to collect at least 250 stickers to finish the album: in order to get this many before the end of the Math-Off, you'll need to find 20 bonus packs...
Of course, these are just the mean values and you could get lucky and need fewer stickers. The next graph shows box plots with the quartiles of the data from the simulations.
So if you're lucky, you could complete the album with fewer stickers or fewer friends.
As a thank you for reading to the end of this blog post, here's a link that will give you two bonus packs and help you on your way to the 250 expected stickers...

Similar posts

A surprising fact about quadrilaterals
Interesting tautologies
Runge's Phenomenon
World Cup stickers 2018, pt. 3

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Pat Ashforth: Thanks, fixed
Matthew
                 Reply
Link to sticker book, in the first paragraph, does not work. It points to mathoffstickbook.com
Pat Ashforth
                 Reply
@Road: Thanks, fixed
Matthew
                 Reply
minor typo for the 2 collector case


> and so our collectors should expect to collect 364 stickers

should be 634.
Road
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "b" then "i" then "s" then "e" then "c" then "t" in the box below (case sensitive):

Archive

Show me a random blog post
 2021 

Jan 2021

Christmas (2020) is over
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

game show probability electromagnetic field phd mathsjam talking maths in public coins boundary element methods braiding dates realhats craft chalkdust magazine flexagons twitter rhombicuboctahedron wave scattering latex graph theory ternary a gamut of games martin gardner radio 4 national lottery bubble bobble light programming bodmas cambridge chebyshev matt parker fractals go draughts signorini conditions python curvature sport european cup sound tmip preconditioning reuleaux polygons platonic solids javascript hats finite element method reddit news quadrilaterals rugby probability speed interpolation pac-man golden ratio bempp data chess puzzles pi approximation day computational complexity books stickers the aperiodical gaussian elimination christmas graphs estimation logs matrix of minors trigonometry triangles accuracy pizza cutting folding paper statistics frobel pi misleading statistics royal institution hannah fry data visualisation games palindromes menace advent calendar determinants asteroids game of life captain scarlet london logic mathsteroids royal baby inline code countdown approximation dataset christmas card weak imposition propositional calculus sobolev spaces matrix of cofactors inverse matrices nine men's morris big internet math-off cross stitch matrix multiplication php noughts and crosses dragon curves ucl london underground polynomials football convergence folding tube maps gerry anderson manchester science festival people maths world cup harriss spiral geogebra pythagoras map projections wool arithmetic machine learning binary oeis tennis exponential growth final fantasy simultaneous equations video games manchester plastic ratio squares sorting matrices geometry hexapawn raspberry pi mathslogicbot numerical analysis error bars weather station golden spiral

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2021