mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Christmas card 2016

 2016-12-20 
Last week, I posted about the Christmas card I designed on the Chalkdust blog.
The card looks boring at first glance, but contains 12 puzzles. Converting the answers to base 3, writing them in the boxes on the front, then colouring the 1s green and 2s red will reveal a Christmassy picture.
If you want to try the card yourself, you can download this pdf. Alternatively, you can find the puzzles below and type the answers in the boxes. The answers will be automatically converted to base 3 and coloured...
#Answer (base 10)Answer (base 3)
1000000000
2000000000
3000000000
4000000000
5000000000
6000000000
7000000000
8000000000
9000000000
10000000000
11000000000
12000000000
  1. The square number larger than 1 whose square root is equal to the sum of its digits.
  2. The smallest square number whose factors add up to a different square number.
  3. The largest number that cannot be written in the form \(23n+17m\), where \(n\) and \(m\) are positive integers (or 0).
  4. Write down a three-digit number whose digits are decreasing. Write down the reverse of this number and find the difference. Add this difference to its reverse. What is the result?
  5. The number of numbers between 0 and 10,000,000 that do not contain the digits 0, 1, 2, 3, 4, 5 or 6.
  6. The lowest common multiple of 57 and 249.
  7. The sum of all the odd numbers between 0 and 66.
  8. One less than four times the 40th triangle number.
  9. The number of factors of the number \(2^{756}\)×\(3^{12}\).
  10. In a book with 13,204 pages, what do the page numbers of the middle two pages add up to?
  11. The number of off-diagonal elements in a 27×27 matrix.
  12. The largest number, \(k\), such that \(27k/(27+k)\) is an integer.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Matthew: Thank you for the prompt response! It makes sense now and perhaps I should have read a little closer!
Dan Whitman
                 Reply
@Dan Whitman: Find the difference between the original number and the reverse of the original. Call this difference \(a\). Next add \(a\) to the reverse of \(a\)...
Matthew
            ×1     Reply
In number 4 what are we to take the difference between? Do you mean the difference between the original number and its reverse? If so when you add the difference back to the reverse you simply get the original number, which is ambiguous. I am not sure what you are asking us to do here.
Dan Whitman
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "i" then "n" then "t" then "e" then "g" then "e" then "r" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

polynomials final fantasy guest posts interpolation matrix of minors arithmetic asteroids geogebra golden spiral tmip realhats pascal's triangle reddit phd determinants martin gardner graphs numerical analysis tennis python european cup palindromes exponential growth ternary sobolev spaces a gamut of games manchester science festival chess news turtles frobel cambridge wool finite element method logic bempp databet games matt parker recursion golden ratio go finite group latex fonts crosswords pac-man matrix of cofactors people maths pi crossnumber light misleading statistics newcastle preconditioning zines mean bots sorting pythagoras dates simultaneous equations stickers weak imposition javascript errors php dinosaurs folding tube maps oeis 24 hour maths programming talking maths in public dragon curves cross stitch platonic solids inline code trigonometry menace noughts and crosses quadrilaterals live stream chebyshev youtube wave scattering bubble bobble gerry anderson signorini conditions data computational complexity curvature braiding accuracy probability pi approximation day craft pizza cutting books standard deviation raspberry pi nine men's morris advent calendar correlation dataset manchester propositional calculus london underground christmas weather station sound friendly squares puzzles draughts matrices error bars rhombicuboctahedron electromagnetic field football numbers approximation regular expressions crossnumbers machine learning rugby national lottery the aperiodical estimation game show probability gaussian elimination radio 4 logs plastic ratio statistics edinburgh flexagons anscombe's quartet matrix multiplication convergence world cup royal baby fractals chalkdust magazine crochet royal institution datasaurus dozen captain scarlet mathslogicbot kings christmas card game of life hexapawn folding paper countdown sport map projections big internet math-off fence posts binary mathsteroids runge's phenomenon speed video games hats coins squares logo reuleaux polygons gather town graph theory mathsjam harriss spiral stirling numbers bodmas london data visualisation inverse matrices hannah fry triangles ucl hyperbolic surfaces geometry boundary element methods

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025