mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Log-scaled axes

 2020-03-31 
Recently, you've probably seen a lot of graphs that look like this:
The graph above shows something that is growing exponentially: its equation is \(y=kr^x\), for some constants \(k\) and \(r\). The value of the constant \(r\) is very important, as it tells you how quickly the value is going to grow. Using a graph of some data, it is difficult to get an anywhere-near-accurate approximation of \(r\).
The following plot shows three different exponentials. It's very difficult to say anything about them except that they grow very quickly above around \(x=15\).
\(y=2^x\), \(y=40\times 1.5^x\), and \(y=0.002\times3^x\)
It would be nice if we could plot these in a way that their important properties—such as the value of the ratio \(r\)—were more clearly evident from the graph. To do this, we start by taking the log of both sides of the equation:
$$\log y=\log(kr^x)$$
Using the laws of logs, this simplifies to:
$$\log y=\log k+x\log r$$
This is now the equation of a straight line, \(\hat{y}=m\hat{x}+c\), with \(\hat{y}=\log y\), \(\hat{x}=x\), \(m=\log r\) and \(c=\log k\). So if we plot \(x\) against \(\log y\), we should get a straight line with gradient \(\log r\). If we plot the same three exponentials as above using a log-scaled \(y\)-axis, we get:
\(y=2^x\), \(y=40\times 1.5^x\), and \(y=0.002\times3^x\) with a log-scaled \(y\)-axis
From this picture alone, it is very clear that the blue exponential has the largest value of \(r\), and we could quickly work out a decent approximation of this value by calculating 10 (or the base of the log used if using a different log) to the power of the gradient.

Log-log plots

Exponential growth isn't the only situation where scaling the axes is beneficial. In my research in finite and boundary element methods, it is common that the error of the solution \(e\) is given in terms of a grid parameter \(h\) by a polynomial of the form \(e=ah^k\), for some constants \(a\) and \(k\).
We are often interested in the value of the power \(k\). If we plot \(e\) against \(h\), it's once again difficult to judge the value of \(k\) from the graph alone. The following graph shows three polynomials.
\(y=x^2\), \(y=x^{1.5}\), and \(y=0.5x^3\)
Once again is is difficult to judge any of the important properties of these. To improve this, we once again begin by taking the log of each side of the equation:
$$\log e=\log (ah^k)$$
Applying the laws of logs this time gives:
$$\log e=\log a+k\log h$$
This is now the equation of a straight line, \(\hat{y}=m\hat{x}+c\), with \(\hat{y}=\log e\), \(\hat{x}=\log h\), \(m=k\) and \(c=\log a\). So if we plot \(\log x\) against \(\log y\), we should get a straight line with gradient \(k\).
Doing this for the same three curves as above gives the following plot.
\(y=x^2\), \(y=x^{1.5}\), and \(y=0.5x^3\) with log-scaled \(x\)- and \(y\)-axes
It is easy to see that the blue line has the highest value of \(k\) (as it has the highest gradient, and we could get a decent approximation of this value by finding the line's gradient.

As well as making it easier to get good approximations of important parameters, making curves into straight lines in this way also makes it easier to plot the trend of real data. Drawing accurate exponentials and polynomials is hard at the best of times; and real data will not exactly follow the curve, so drawing an exponential or quadratic of best fit will be an even harder task. By scaling the axes first though, this task simplifies to drawing a straight line through the data; this is much easier.
So next time you're struggling with an awkward curve, why not try turning it into a straight line first.

Similar posts

Visualising MENACE's learning
World Cup stickers 2018, pt. 2
Christmas (2020) is over
Christmas card 2020

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "p" then "r" then "i" then "m" then "e" in the box below (case sensitive):

Archive

Show me a random blog post
 2021 

Jan 2021

Christmas (2020) is over
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

programming matrices inverse matrices frobel javascript draughts realhats sport matrix of minors computational complexity mathslogicbot national lottery craft royal baby inline code geometry big internet math-off game show probability speed machine learning boundary element methods squares chebyshev pythagoras data golden spiral finite element method flexagons tennis pi approximation day dataset preconditioning golden ratio data visualisation binary reuleaux polygons mathsjam bodmas bubble bobble electromagnetic field palindromes final fantasy triangles misleading statistics arithmetic books sorting football convergence hats a gamut of games matrix multiplication dragon curves rhombicuboctahedron error bars exponential growth menace radio 4 weak imposition matt parker raspberry pi chalkdust magazine ternary logic sobolev spaces captain scarlet harriss spiral stickers statistics dates games cambridge simultaneous equations matrix of cofactors approximation platonic solids asteroids interpolation cross stitch london polynomials python manchester science festival christmas bempp puzzles european cup ucl talking maths in public countdown signorini conditions rugby mathsteroids geogebra wool noughts and crosses estimation people maths accuracy map projections pi propositional calculus plastic ratio phd video games coins graphs hexapawn oeis probability gerry anderson royal institution nine men's morris light hannah fry world cup sound game of life christmas card graph theory reddit curvature trigonometry pac-man braiding gaussian elimination determinants latex logs fractals php weather station numerical analysis go wave scattering pizza cutting tmip chess news quadrilaterals martin gardner folding tube maps twitter manchester folding paper london underground the aperiodical advent calendar

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2021