mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

TMiP 2023 puzzle hunt

 2023-09-02 
This week, I've been at Talking Maths in Public (TMiP) in Newcastle. TMiP is a conference for anyone involved in—or interested in getting involved in—any sort of maths outreach, enrichment, or public engagement activity. It was really good, and I highly recommend coming to TMiP 2025.
The Saturday morning at TMiP was filled with a choice of activities, including a puzzle hunt written by me: the Tyne trial. At the start/end point of the Tyne trial, there was a locked box with a combination lock. In order to work out the combination for the lock, you needed to find some clues hidden around Newcastle and solve a few puzzles.
Every team taking part was given a copy of these instructions. Some people attended TMiP virtually, so I also made a version of the Tyne trial that included links to Google Street View and photos from which the necessary information could be obtained. You can have a go at this at mscroggs.co.uk/tyne-trial/remote. For anyone who wants to try the puzzles without searching through virtual Newcastle, the numbers that you needed to find are:
The solutions to the puzzles and the final puzzle are below. If you want to try the puzzles for yourself, do that now before reading on.

Puzzle for clue #2: Palindromes

We are going to start with a number then repeat the following process: if the number you have is a palindrome, stop; otherwise add the number to itself backwards. For example, if we start with 219, then we do: $$219\xrightarrow{+912}1131\xrightarrow{+1311}2442.$$ If you start with the number \(10b+9\) (ie 59), what palindrome do you get?
(If you start with 196, it is unknown whether you will ever get a palindrome.)

Show solution

Puzzle for clue #3: Mostly ones

There are 12 three-digit numbers whose digits are 1, 2, 3, 4, or 5 with exactly two digits that are ones. How many \(c\)-digit (ie 1838-digit) numbers are there whose digits are 1, 2, 3, 4, or 5 with exactly \(c-1\) digits (ie 1837) that are ones?

Show solution

Puzzle for clue #4: is it an integer?

The largest value of \(n\) such that \((n!-2)/(n-2)\) is an integer is 4. What is the largest value of \(n\) such that \((n!-d)/(n-d)\) (ie \((n!-1931)/(n-1931)\)) is an integer?

Show solution

Puzzle for clue #5: How many steps?

We are going to start with a number then repeat the following process: if we've reached 0, stop; otherwise subtract the smallest prime factor of the current number. For example, if we start with 9, then we do: $$9\xrightarrow{-3}6\xrightarrow{-2}4\xrightarrow{-2}2\xrightarrow{-2}0.$$ It took 4 steps to get to 0. What is the smallest starting number such that this process will take \(e\) (ie 1619) steps?

Show solution

Puzzle for clue #6: Four-digit number

I thought of a four digit number. I removed a digit to make a three digit number, then added my two numbers together. The result is \(200f+127\) (ie 9727). What was my original number?

Show solution

Puzzle for clue #7: Dice

If you roll two six-sided fair dice, the most likely total is 7. What is the most likely total if you rolled \(1470+g\) (ie 2470) dice?

Show solution

The final puzzle

The final puzzle involves using the answers to the five puzzles to find the four digit code that opens the box (and the physical locked box that was in the library on Saturday. To give hints to this code, each clue was given a "score".
The score of a number is the number of values of \(i\) such that the \(i\)th digit of the code is a factor of the \(i\)th digit of the number. For example, if the code was 1234, then the score of the number 3654 would be 3 (because 1 is a factor of 3; 2 is a factor of 6; and 4 is a factor of 4).
The seven clues to the final code are:

Show solution

×1                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "prime" in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

radio 4 matrix multiplication databet dates football guest posts curvature oeis approximation folding paper london underground zines asteroids pi determinants stirling numbers palindromes manchester science festival realhats craft cambridge matrices plastic ratio preconditioning boundary element methods national lottery graph theory world cup edinburgh javascript books logic london countdown bubble bobble matt parker video games estimation accuracy ucl wool folding tube maps golden spiral game show probability turtles signorini conditions platonic solids reddit mathsjam weak imposition sound error bars coins rugby christmas correlation interpolation runge's phenomenon phd stickers geogebra european cup reuleaux polygons newcastle royal baby probability pac-man manchester logo bempp crochet computational complexity pi approximation day pascal's triangle frobel mean binary datasaurus dozen misleading statistics dataset go tmip christmas card sport finite group weather station fence posts finite element method errors dragon curves gerry anderson chess logs electromagnetic field inverse matrices anscombe's quartet raspberry pi fractals nine men's morris pizza cutting ternary 24 hour maths machine learning standard deviation harriss spiral gaussian elimination matrix of cofactors news bodmas a gamut of games people maths talking maths in public polynomials game of life sobolev spaces noughts and crosses games light arithmetic live stream numerical analysis data inline code trigonometry hexapawn captain scarlet chebyshev braiding matrix of minors recursion mathslogicbot graphs big internet math-off programming hyperbolic surfaces menace cross stitch youtube final fantasy pythagoras numbers map projections sorting convergence golden ratio squares fonts triangles martin gardner propositional calculus quadrilaterals puzzles speed statistics royal institution advent calendar exponential growth flexagons hannah fry the aperiodical hats geometry rhombicuboctahedron php crossnumber gather town mathsteroids simultaneous equations python wave scattering data visualisation draughts dinosaurs chalkdust magazine tennis latex

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024