mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2016-12-20 
Last week, I posted about the Christmas card I designed on the Chalkdust blog.
The card looks boring at first glance, but contains 12 puzzles. Converting the answers to base 3, writing them in the boxes on the front, then colouring the 1s green and 2s red will reveal a Christmassy picture.
If you want to try the card yourself, you can download this pdf. Alternatively, you can find the puzzles below and type the answers in the boxes. The answers will be automatically converted to base 3 and coloured...
#Answer (base 10)Answer (base 3)
1000000000
2000000000
3000000000
4000000000
5000000000
6000000000
7000000000
8000000000
9000000000
10000000000
11000000000
12000000000
  1. The square number larger than 1 whose square root is equal to the sum of its digits.
  2. The smallest square number whose factors add up to a different square number.
  3. The largest number that cannot be written in the form \(23n+17m\), where \(n\) and \(m\) are positive integers (or 0).
  4. Write down a three-digit number whose digits are decreasing. Write down the reverse of this number and find the difference. Add this difference to its reverse. What is the result?
  5. The number of numbers between 0 and 10,000,000 that do not contain the digits 0, 1, 2, 3, 4, 5 or 6.
  6. The lowest common multiple of 57 and 249.
  7. The sum of all the odd numbers between 0 and 66.
  8. One less than four times the 40th triangle number.
  9. The number of factors of the number \(2^{756}\)×\(3^{12}\).
  10. In a book with 13,204 pages, what do the page numbers of the middle two pages add up to?
  11. The number of off-diagonal elements in a 27×27 matrix.
  12. The largest number, \(k\), such that \(27k/(27+k)\) is an integer.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Matthew: Thank you for the prompt response! It makes sense now and perhaps I should have read a little closer!
Dan Whitman
                 Reply
@Dan Whitman: Find the difference between the original number and the reverse of the original. Call this difference \(a\). Next add \(a\) to the reverse of \(a\)...
Matthew
            ×1     Reply
In number 4 what are we to take the difference between? Do you mean the difference between the original number and its reverse? If so when you add the difference back to the reverse you simply get the original number, which is ambiguous. I am not sure what you are asking us to do here.
Dan Whitman
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "j" then "u" then "m" then "p" in the box below (case sensitive):
 2016-11-27 
This year, the front page of mscroggs.co.uk will feature an advent calendar, just like last year. Behind each door, there will be a puzzle with a three digit solution. The solution to each day's puzzle forms part of a murder mystery logic puzzle in which you have to work out the murderer, motive, location and weapon used: the answer to each of these murder facts is a digit from 1 to 9 (eg. The murderer could be 6, the motive 9, etc.).
As you solve the puzzles, your answers will be stored in a cookie. Behind the door on Christmas Day, there will be a form allowing you to submit your answers. The winner will be randomly chosen from all those who submit the correct answer on Christmas Day. Runners up will then be chosen from those who submit the correct answer on Christmas Day, then those who submit the correct answer on Boxing Day, then the next day, and so on. As the winners will be chosen randomly, there is no need to get up at 5am on Christmas Day this year!
The winner will win this array of prizes:
I will be adding to the pile of prizes throughout December. Runners up will get a subset of the prizes. The winner and runners up will also win an mscroggs.co.uk 2016 winners medal:
To win a prize, you must submit your entry before the end of 2016. Only one entry will be accepted per person. Once ten correct entries have been submitted, I will add a note here and below the calendar. If you have any questions, ask them in the comments below or on Twitter.
So once December is here, get solving! Good luck and have a very merry Christmas!
Edit: added picture of this year's medals.
Edit: more than ten correct entries have been submitted, list of prize winners can be found here. You can still submit your answers but the only prize left is glory.
            ×1            
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Another Matthew: Ten correct submissions have been made. Just updating the pages to reflect this...
Matthew
                 Reply
Have 10 correct submissions not been made yet?
Another Matthew
                 Reply
Thank you, @Matthew: !
Lyra
                 Reply
Really enjoyed the extra bit at the end this year! Looking forward to 2017's calendar.
Louis
                 Reply
@Lyra: I'll email you if you are one of the winners to get the rest of your address!
Matthew
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "nogaxeh" backwards in the box below (case sensitive):
 2016-10-08 
During my Electromagnetic Field talk this year, I spoke about @mathslogicbot (now reloated to @logicbot@mathstodon.xyz and @logicbot.bsky.social), my Twitter bot that is working its way through the tautologies in propositional calculus. My talk included my conjecture that the number of tautologies of length \(n\) is an increasing sequence (except when \(n=8\)). After my talk, Henry Segerman suggested that I also look at the number of contradictions of length \(n\) to look for insights.
A contradiction is the opposite of a tautology: it is a formula that is False for every assignment of truth values to the variables. For example, here are a few contradictions:
$$\neg(a\leftrightarrow a)$$ $$\neg(a\rightarrow a)$$ $$(\neg a\wedge a)$$ $$(\neg a\leftrightarrow a)$$
The first eleven terms of the sequence whose \(n\)th term is the number of contradictions of length \(n\) are:
$$0, 0, 0, 0, 0, 6, 2, 20, 6, 127, 154$$
This sequence is A277275 on OEIS. A list of contractions can be found here.
For the same reasons as the sequence of tautologies, I would expect this sequence to be increasing. Surprisingly, it is not increasing for small values of \(n\), but I again conjecture that it is increasing after a certain point.

Properties of the sequences

There are some properties of the two sequences that we can show. Let \(a(n)\) be the number of tautolgies of length \(n\) and let \(b(n)\) be the number of contradictions of length \(n\).
First, the number of tautologies and contradictions, \(a(n)+b(n)\), (A277276) is an increasing sequence. This is due to the facts that \(a(n+1)\geq b(n)\) and \(b(n+1)\geq a(n)\), as every tautology of length \(n\) becomes a contraction of length \(n+1\) by appending a \(\neg\) to be start and vice versa.
This implies that for each \(n\), at most one of \(a\) and \(b\) can be decreasing at \(n\), as if both were decreasing, then \(a+b\) would be decreasing. Sadly, this doesn't seem to give us a way to prove the conjectures, but it is a small amount of progress towards them.
Edit: Added Mastodon and Bluesky links
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "w" then "i" then "d" then "t" then "h" in the box below (case sensitive):
 2016-10-06 
Thanks to Marc, I noticed that today's date is a palindrome in two different date formats—DMMYY (61016) and DMMYYYY (6102016).
This made me wonder when there will be another date that is palindromic in multiple date formats, so I wrote a Python script to find out.
Turns out there's not too long to wait: 10 July 2017 will be palindromic in two date formats (MDDYY and MDDYYYY). But before that, there's 1 July 2017, which is palindromic in three date formats (YYMMD, YYMD and MDYY). Most exciting of all, however, is 2 February 2020, which is palindromic in 7 different formats!
The next palindromic dates are shown in the following table. It will update as the dates pass.
 \(n\) Next day with \(\geq n\) palindromic formatsFormats
12 February 2026YYYYMDD
22 June 2026YYMMD,YYMD,MDYY
32 June 2026YYMMD,YYMD,MDYY
42 March 2030YYYYMMDD,MMDDYYYY,YYYYMDD,MMDYY
51 January 2110DDMYYYY,YYMDD,DDMYY,MMDYYYY,MMDYY
61 January 2211YYMMD,DMYYYY,MDYYYY,YYMD,DMYY,MDYY
A full list of future palindromic dates can be found here.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
In some of your full list you use the same format forwards and backwards. I'm just questioning why are YYMDD,DDMYY considered to be different formats when they are palendromic.
Stee
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "orez" backwards in the box below (case sensitive):
 2016-09-06 
This is the fifth post in a series of posts about tube map folding.
After my talk at Electromagnetic Field 2014, I was sent a copy of MC Escher Kaleidocycles by Doris Schattschneider and Wallace Walker (thanks Bob!). A kaleidocycle is a bit like a 3D flexagon: it can be flexed to reveal different parts of itself.
In this blog post, I will tell you how to make a kaleidocycle from tube maps.

You will need

Making the modules

First, fold the cover of a tube map over. This will allow you to have the tube map (and not just its cover) on the faces of your shape.
With the side you want to see facing down, fold the map so that two opposite corners touch.
For this step, there is a choice of which two corners to connect: leading to a right-handed and a left-handed piece. You should make 6 of each type for your kaleidocycle.
Finally, fold the overhanding bits over to complete your module.
The folds you made when connecting opposite corners will need to fold both ways when you flex your shape, so it is worth folding them both ways a few times now before continuing.

Putting it together

Once you have made 12 modules (with 6 of each handedness), you are ready to put the kaleidocycle together.
Take two tube maps of each handedness and tuck them together in a line. Each map is tucked into one of the opposite handedness.
The four triangles across the middle form a net of a tetrahedron. Complete the tetrahedron by putting the last tab into the first triangle. Glue these together.
Take two more tube maps of the opposite handedness to those at the top of the tetrahedron. Fit them into the two triangles poking out of the top of the tetrahedron to make a second tetrahedron.
Repeat this until you have five connected tetrahedra. Finally, connect the triangles poking out of the top and the bottom to make your kaleidocycle.
This is the fifth post in a series of posts about tube map folding.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "emirp" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Jun 2025

A nonogram alphabet

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

approximation squares people maths matrices datasaurus dozen weather station advent calendar geogebra matrix multiplication nonograms phd zines crosswords gather town finite element method news probability regular expressions graph theory platonic solids exponential growth royal baby plastic ratio standard deviation boundary element methods pythagoras bempp matt parker machine learning finite group nine men's morris recursion go dragon curves edinburgh london ternary light pac-man christmas logic radio 4 cross stitch pi mean guest posts dataset noughts and crosses dates pizza cutting frobel wave scattering determinants pi approximation day php hats inline code misleading statistics live stream national lottery error bars signorini conditions hyperbolic surfaces big internet math-off trigonometry wool statistics geometry accuracy quadrilaterals computational complexity fonts sound logs data visualisation craft chalkdust magazine fractals tennis golden ratio estimation bots braiding crossnumber sobolev spaces flexagons menace golden spiral game show probability interpolation rugby turtles sorting polynomials european cup simultaneous equations latex runge's phenomenon bubble bobble final fantasy stirling numbers databet football alphabets london underground talking maths in public python martin gardner chess map projections kings data mathsjam ucl manchester science festival crossnumbers matrix of minors christmas card a gamut of games realhats propositional calculus games newcastle chebyshev weak imposition video games oeis game of life draughts numbers electromagnetic field tmip rhombicuboctahedron hexapawn captain scarlet friendly squares numerical analysis cambridge graphs dinosaurs manchester crochet mathslogicbot hannah fry pascal's triangle stickers anscombe's quartet arithmetic sport fence posts errors binary 24 hour maths programming speed inverse matrices mathsteroids harriss spiral folding paper preconditioning triangles raspberry pi gaussian elimination youtube gerry anderson world cup books asteroids correlation palindromes convergence reddit countdown the aperiodical matrix of cofactors coins javascript bodmas puzzles curvature folding tube maps reuleaux polygons logo royal institution

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025