mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

17 December

If you expand \((a+b+c)^2\), you get \(a^2+b^2+c^2+2ab+2ac+2bc\). This has 6 terms.
How many terms does the expansion of \((a+b+c+d+e+f)^5\) have?

Show answer

14 December

The function \(f(x)=ax+b\) (where \(a\) and \(b\) are real constants) satisfies
$$-x^3+2x^2+6x-9\leqslant f(x)\leqslant x^2-2x+3$$
whenever \(0\leqslant x\leqslant3\). What is \(f(200)\)?

Show answer

18 December

The expansion of \((x+y+z)^3\) is
$$x^3 + y^3 + z^3 + 3x^2y + 3x^2z + 3xy^2 + 3y^2z + 3xz^2 + 3yz^2 + 6xyz.$$
This has 10 terms.
Today's number is the number of terms in the expansion of \((x+y+z)^{26}\).

Show answer

Tags: algebra

10 December

For all values of \(x\), the function \(f(x)=ax+b\) satisfies
$$8x-8-x^2\leqslant f(x)\leqslant x^2.$$
What is \(f(65)\)?
Edit: The left-hand quadratic originally said \(8-8x-x^2\). This was a typo and has now been corrected.

Show answer

7 December

The sum of the coefficients in the expansion of \((x+1)^5\) is 32. Today's number is the sum of the coefficients in the expansion of \((2x+1)^5\).

Show answer

Tags: algebra

18 December

There are 6 terms in the expansion of \((x+y+z)^2\):
$$(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz$$
Today's number is number of terms in the expansion of \((x+y+z)^{16}\).

Show answer

Tags: algebra

10 December

The equation \(x^2+1512x+414720=0\) has two integer solutions.
Today's number is the number of (positive or negative) integers \(b\) such that \(x^2+bx+414720=0\) has two integer solutions.

Show answer

Powerful quadratics

Source: nrich
Find all real solutions to
$$(x^2-7x+11)^{(x^2-11x+30)}=1.$$

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

geometry tournaments polygons consecutive integers area dice numbers grids square grids consecutive numbers shape crosswords integration sequences coordinates complex numbers functions neighbours trigonometry star numbers symmetry sums regular shapes products axes calculus even numbers means determinants tangents people maths bases perimeter median probability square roots albgebra rectangles games quadrilaterals integers geometric means digits cryptic clues fractions clocks division sum to infinity routes quadratics 2d shapes partitions ave factorials algebra the only crossnumber sport volume rugby sets doubling hexagons advent perfect numbers parabolas triangle numbers factors matrices unit fractions gerrymandering crossnumbers speed proportion menace books digital products addition differentiation binary dates indices averages chocolate combinatorics wordplay powers triangles number graphs percentages cubics numbers christmas decahedra prime numbers colouring probabilty money pentagons lines polynomials elections time shapes circles medians balancing palindromes expansions arrows irreducible numbers multiples cube numbers taxicab geometry geometric mean tiling cards surds dodecagons coins logic planes folding tube maps multiplication chalkdust crossnumber chess remainders cryptic crossnumbers odd numbers squares dominos grids pascal's triangle mean scales square numbers floors ellipses 3d shapes angles spheres digital clocks range

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025