mscroggs.co.uk
mscroggs.co.uk

subscribe

Advent calendar 2023

25 December

It's nearly Christmas and something terrible has happened: a machine in Santa's toy factory has malfunctioned, and is unable to finish building all the presents that Santa needs. You need to help Santa work out how to fix the broken machine so that he can build the presents and deliver them before Christmas is ruined for everyone.
Inside the broken machine, there were five toy production units (TPUs) installed at sockets labelled A to E. During the malfunction, these TPUs were so heavily damaged that Santa is unable to identify which TPU they were when trying to fix the machine. The company that supplies TPUs builds 10 different units, numbered from 0 to 9. You need to work out which of the 10 TPUs needs to be installed in each of the machine's sockets, so that Santa can fix the machine. It may be that two or more of the TPUs are the same.
You can attempt to fix the machine here.

Show answer

24 December

When written in binary, the number 235 is 11101011. This binary representation starts and ends with 1 and does not contain two 0s in a row.
What is the smallest three-digit number whose binary representation starts and ends with 1 and does not contain two 0s in a row?

Show answer

23 December

There are 18 ways to split a 3 by 3 square into 3 rectangles whose sides all have integer length:
How many ways are there to split a 10 by 10 square into 3 rectangles whose sides all have integer length?

Show answer

22 December

There are 4 ways to pick three vertices of a regular quadrilateral so that they form a right-angled triangle:
In another regular polygon with \(n\) sides, there are 14620 ways to pick three vertices so that they form a right-angled triangle. What is \(n\)?

Show answer

21 December

There are 6 two-digit numbers whose digits are all 1, 2, or 3 and whose second digit onwards are all less than or equal to the previous digit:
How many 20-digit numbers are there whose digits are all 1, 2, or 3 and whose second digit onwards are all less than or equal to the previous digit?

Show answer & extension

20 December

There are 6 different ways that three balls labelled 1 to 3 can be put into two boxes labelled A and B so that no box is empty:
How many ways can five balls labelled 1 to 5 be put into four boxes labelled A to D so that no box is empty?

Show answer

19 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
+= 7
× × ×
+= 0
÷ ÷ ÷
+= 2
=
4
=
35
=
18

Show answer

Tags: numbers, grids

18 December

Some numbers can be written as the product of two or more consecutive integers, for example:
$$6=2\times3$$ $$840=4\times5\times6\times7$$
What is the smallest three-digit number that can be written as the product of two or more consecutive integers?

17 December

If you expand \((a+b+c)^2\), you get \(a^2+b^2+c^2+2ab+2ac+2bc\). This has 6 terms.
How many terms does the expansion of \((a+b+c+d+e+f)^5\) have?

Show answer

16 December

Some numbers can be written as the sum of two or more consecutive positive integers, for example:
$$7=3+4$$ $$18=5+6+7$$
Some numbers (for example 4) cannot be written as the sum of two or more consecutive positive integers. What is the smallest three-digit number that cannot be written as the sum of two or more consecutive positive integers?

Show answer & extension

15 December

The arithmetic mean of a set of \(n\) numbers is computed by adding up all the numbers, then dividing the result by \(n\). The geometric mean of a set of \(n\) numbers is computed by multiplying all the numbers together, then taking the \(n\)th root of the result.
The arithmetic mean of the digits of the number 132 is \(\tfrac13(1+3+2)=2\). The geometric mean of the digits of the number 139 is \(\sqrt[3]{1\times3\times9}\)=3.
What is the smallest three-digit number whose first digit is 4 and for which the arithmetic and geometric means of its digits are both non-zero integers?

Show answer & extension

14 December

The function \(f(x)=ax+b\) (where \(a\) and \(b\) are real constants) satisfies
$$-x^3+2x^2+6x-9\leqslant f(x)\leqslant x^2-2x+3$$
whenever \(0\leqslant x\leqslant3\). What is \(f(200)\)?

Show answer

13 December

Today's number is given in this crossnumber. No number in the completed grid starts with 0.

Show answer

12 December

What is the smallest value of \(n\) such that
$$\frac{500!\times499!\times498!\times\dots\times1!}{n!}$$
is a square number?

Show answer

11 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 15
+ + ÷
+= 10
+ ×
÷×= 3
=
16
=
1
=
30

Show answer

Tags: numbers, grids

10 December

How many integers are there between 100 and 1000 whose digits add up to an even number?

Show answer

9 December

The diagram below shows a rectangle. Two of its sides have been coloured blue. A red line has been drawn from two of its vertices to the midpoint of a side.
The total length of the blue lines is 50cm. The total length of the red lines is also 50cm. What is the area of the rectangle (in cm2)?

Show answer

8 December

Noel writes the numbers 1 to 17 in a row. Underneath, he writes the same list without the first and last numbers, then continues this until he writes a row containing just one number:
What is the sum of all the numbers that Noel has written?

Show answer & extension

Tags: numbers

7 December

There are 8 sets (including the empty set) that contain numbers from 1 to 4 that don't include any consecutive integers:
\(\{\}\), \(\{1\}\), \(\{2\}\), \(\{3\}\), \(\{4\}\), \(\{1,3\}\), \(\{1,4\}\), \(\{2, 4\}\)
How many sets (including the empty set) are there that contain numbers from 1 to 14 that don't include any consecutive integers?

Show answer & extension

Tags: number, sets

6 December

There are 5 ways to tile a 4×2 rectangle with 2×1 pieces:
How many ways are there to tile a 12×2 rectangle with 2×1 pieces?

Show answer

5 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 15
+ +
++= 15
+ × ÷
++= 15
=
15
=
15
=
15

Show answer

Tags: numbers, grids

4 December

If \(n\) is 1, 2, 4, or 6 then \((n!-3)/(n-3)\) is an integer. The largest of these numbers is 6.
What is the largest possible value of \(n\) for which \((n!-123)/(n-123)\) is an integer?

Show answer

3 December

190 is the smallest multiple of 10 whose digits add up to 10.
What is the smallest multiple of 15 whose digits add up to 15?

2 December

Holly adds up the first six even numbers, then adds on half of the next even number. Her total is 49.
Next, Holly adds up the first \(n\) even numbers then adds on half of the next even number. This time, her total is 465124. What is \(n\)?

Show answer & extension

1 December

Each interior angle of a regular triangle is 60°.
Each interior angle of a different regular polygon is 178°. How many sides does this polygon have?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

expansions rugby calculus differentiation addition sequences dodecagons proportion irreducible numbers floors digits polygons 2d shapes integration ellipses determinants range circles medians chocolate matrices time cards unit fractions pascal's triangle clocks quadratics probabilty perimeter numbers grids logic crossnumbers arrows coordinates powers people maths trigonometry factorials numbers triangle numbers remainders shape complex numbers symmetry probability planes cryptic clues geometry tiling cube numbers wordplay digital products menace partitions digital clocks routes functions angles surds money 3d shapes chess division colouring indices triangles volume multiplication area folding tube maps odd numbers median sums consecutive numbers integers polynomials grids axes ave dates mean rectangles advent palindromes multiples prime numbers shapes sport products parabolas averages pentagons books algebra square roots combinatorics bases cryptic crossnumbers square numbers consecutive integers binary tournaments chalkdust crossnumber number cubics geometric means dice dominos hexagons means sum to infinity square grids graphs even numbers doubling tangents percentages lines crosswords albgebra squares elections coins star numbers christmas sets spheres scales geometric mean games neighbours gerrymandering balancing speed regular shapes perfect numbers decahedra quadrilaterals the only crossnumber factors fractions taxicab geometry

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025