mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

24 December

There are six ways to put two tokens in a 3 by 3 grid so that the diagonal from the top left to the bottom right is a line of symmetry:
Today's number is the number of ways of placing two tokens in a 29 by 29 grid so that the diagonal from the top left to the bottom right is a line of symmetry.

Show answer

23 December

198 is the smallest number that is equal to 11 times the sum of its digits.
Today's number is the smallest number that is equal to 48 times the sum of its digits.

Show answer

22 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the largest number you can make with the digits in the red boxes.
++= 18
+ + +
÷-= 1/2
+ + +
+÷= 3/2
=
24
=
8
=
13

Show answer

Tags: numbers, grids

21 December

There are 3 ways to order the numbers 1 to 3 so that no number immediately follows the number one less that itself:
Today's number is the number of ways to order the numbers 1 to 6 so that no number immediately follows the number one less that itself.

Show answer

20 December

18 can be written as the sum of 3 consecutive (strictly) positive integers: 5 + 6 + 7.
18 can also be written as the sum of 4 consecutive (strictly) positive integers: 3 + 4 + 5 + 6.
18 is in fact the smallest number that can be written as the sum of both 3 and 4 consecutive (strictly) positive integers.
Today's number is the smallest number that can be written as the sum of both 12 and 13 consecutive (strictly) positive integers.

Show answer

Tags: numbers, sums

17 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums and product are correct. Today's number is the product of the numbers in the red boxes.
++= 16
+ + +
++= 8
+ + +
××= 288
=
11
=
14
=
20

Show answer

Tags: numbers, grids

15 December

When talking to someone about this Advent calendar, you told them that the combination of XMAS and MATHS is GREAT. They were American, so asked you if the combination of XMAS and MATH is great; you said SURE. You asked them their name; they said SAM.
Each of the letters E, X, M, A, T, H, S, R, U, and G stands for a different digit 0 to 9. The following sums are correct:
Today's number is SAM. To help you get started, the letter T represents 4.

Show answer

14 December

The numbers 33, 404 and 311 contain duplicate digits. The numbers 120, 15 and 312 do not.
How many numbers between 10 and 999 (inclusive) contain no duplicate digits?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2020

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018


List of all puzzles

Tags

taxicab geometry addition unit fractions partitions time rectangles cube numbers speed crosswords chocolate spheres combinatorics dominos mean lines shape means arrows calculus fractions integration rugby games triangles circles parabolas ave colouring star numbers trigonometry menace cryptic crossnumbers folding tube maps perfect numbers scales hexagons coins triangle numbers factorials geometry ellipses percentages routes books elections proportion crossnumbers regular shapes grids square numbers graphs coordinates multiplication polygons wordplay sums median indices prime numbers sport planes floors sequences odd numbers 2d shapes cards palindromes advent range dice digital clocks number factors tiling numbers algebra functions multiples chalkdust crossnumber chess irreducible numbers quadrilaterals balancing cryptic clues shapes remainders perimeter area crossnumber surds square roots sum to infinity clocks division money angles dodecagons dates pascal's triangle integers bases symmetry people maths gerrymandering squares products averages the only crossnumber volume complex numbers logic christmas differentiation probability quadratics probabilty 3d shapes doubling digits

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2021