mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Integer part

Let \(\lfloor x\rfloor \) denote the integer part of \(x\) (eg. \(\lfloor 7.8\rfloor =7\)).
When are the following true:
a) \(\lfloor x+1\rfloor = \lfloor x\rfloor + 1\)
b) \(\lfloor nx\rfloor = n\lfloor x\rfloor\) (where \(n\) is an integer)
c) \(\lfloor x+y\rfloor = \lfloor x\rfloor +\lfloor y\rfloor \)
d) \(\lfloor xy\rfloor = \lfloor x\rfloor \lfloor y\rfloor \)

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

numbers binary chalkdust crossnumber palindromes geometric means sport functions colouring algebra spheres scales planes clocks square roots median sums doubling polynomials quadrilaterals proportion neighbours menace division parabolas cryptic clues ellipses albgebra routes crossnumbers lines probability geometry triangle numbers volume surds graphs medians decahedra mean angles taxicab geometry number dice percentages advent averages digits multiples dates rectangles area arrows 2d shapes coordinates chocolate ave even numbers coins the only crossnumber grids geometric mean factorials dominos consecutive integers indices folding tube maps fractions pentagons people maths hexagons cryptic crossnumbers complex numbers squares games addition books 3d shapes bases elections differentiation cube numbers circles wordplay symmetry perimeter irreducible numbers consecutive numbers shape powers christmas tournaments pascal's triangle expansions crosswords tiling balancing remainders partitions cards speed money tangents numbers grids square grids digital products quadratics multiplication square numbers cubics range rugby calculus chess dodecagons axes probabilty triangles regular shapes trigonometry unit fractions floors gerrymandering star numbers matrices logic perfect numbers sets determinants products factors digital clocks time sequences integration means prime numbers sum to infinity integers combinatorics polygons shapes odd numbers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025