Integer part

Let \(\lfloor x\rfloor \) denote the integer part of \(x\) (eg. \(\lfloor 7.8\rfloor =7\)).
When are the following true:
a) \(\lfloor x+1\rfloor = \lfloor x\rfloor + 1\)
b) \(\lfloor nx\rfloor = n\lfloor x\rfloor\) (where \(n\) is an integer)
c) \(\lfloor x+y\rfloor = \lfloor x\rfloor +\lfloor y\rfloor \)
d) \(\lfloor xy\rfloor = \lfloor x\rfloor \lfloor y\rfloor \)

Show answer & extension


Show me a random puzzle
 Most recent collections 

Advent calendar 2020

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

List of all puzzles


doubling ellipses probabilty functions cube numbers algebra lines dominos trigonometry factorials odd numbers area ave perfect numbers games percentages mean combinatorics number prime numbers probability crosswords irreducible numbers perimeter squares symmetry christmas division rugby integers digital clocks differentiation clocks wordplay cryptic clues books bases 2d shapes proportion factors addition cards numbers triangle numbers regular shapes triangles dodecagons square numbers indices routes pascal's triangle calculus grids coins polygons people maths sequences parabolas means tiling folding tube maps planes multiples colouring balancing median sport sum to infinity money taxicab geometry multiplication star numbers time dice palindromes remainders coordinates crossnumber angles range scales cryptic crossnumbers dates crossnumbers speed averages sums integration circles gerrymandering shapes logic digits partitions shape rectangles floors chocolate volume chalkdust crossnumber advent graphs surds elections hexagons arrows menace fractions spheres square roots quadrilaterals 3d shapes quadratics complex numbers chess unit fractions geometry products the only crossnumber


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2021