mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Integer part

Let \(\lfloor x\rfloor \) denote the integer part of \(x\) (eg. \(\lfloor 7.8\rfloor =7\)).
When are the following true:
a) \(\lfloor x+1\rfloor = \lfloor x\rfloor + 1\)
b) \(\lfloor nx\rfloor = n\lfloor x\rfloor\) (where \(n\) is an integer)
c) \(\lfloor x+y\rfloor = \lfloor x\rfloor +\lfloor y\rfloor \)
d) \(\lfloor xy\rfloor = \lfloor x\rfloor \lfloor y\rfloor \)

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

palindromes sets decahedra perimeter 3d shapes digital clocks complex numbers rugby determinants area angles differentiation scales probability percentages dodecagons time balancing ave binary dominos speed cards coordinates books range medians quadrilaterals planes consecutive numbers people maths even numbers doubling money colouring elections chess integers triangle numbers averages calculus means tiling routes powers polygons integration remainders menace matrices cube numbers odd numbers fractions tournaments star numbers perfect numbers numbers grids sums geometric mean neighbours expansions surds arrows coins chocolate indices albgebra shape square grids cryptic crossnumbers geometry axes gerrymandering rectangles unit fractions proportion folding tube maps spheres parabolas christmas algebra grids quadratics clocks lines cubics combinatorics crossnumbers partitions shapes taxicab geometry geometric means crosswords division dates games the only crossnumber volume square roots hexagons irreducible numbers square numbers probabilty 2d shapes numbers squares mean trigonometry products regular shapes sequences multiplication multiples triangles median graphs symmetry number digits consecutive integers tangents pentagons sum to infinity logic circles sport advent dice functions pascal's triangle digital products chalkdust crossnumber addition ellipses prime numbers cryptic clues wordplay factors polynomials bases floors factorials

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025