mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

1 December

One of the vertices of a rectangle is at the point \((9, 0)\). The \(x\)-axis and \(y\)-axis are both lines of symmetry of the rectangle.
What is the area of the rectangle?

Show answer

6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),
$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?

Between quadratics

Source: Luciano Rila (@DrTrapezio)
\(p(x)\) is a quadratic polynomial with real coefficients. For all real numbers \(x\),
$$x^2-2x+2\leq p(x)\leq 2x^2-4x+3$$
\(p(11)=181\). Find \(p(16)\).

Show answer

Balanced sets

A set of points in the plane is called 'balanced' if for any two points \(A\) and \(B\) in the set, there is another point \(C\) in the set such that \(AC=BC\) (here \(AC\) is the distance between \(A\) and \(C\)).
For all \(n\geq3\), find a balanced set of \(n\) points.

Show answer

Bézier curve

A Bézier curve is created as follows:
1) A set of points \(P_0\), ..., \(P_n\) are chosen (in the example \(n=4\)).
2) A set of points \(Q_0\), ..., \(Q_{n-1}\) are defined by \(Q_i=t P_{i+1}+(1-t) P_i\) (shown in green).
3) A set of points \(R_0\), ..., \(R_{n-2}\) are defined by \(R_i=t Q_{i+1}+(1-t) Q_i\) (shown in blue).
.
.
.
\(n\)) After repeating the process \(n\) times, there will be one point. The Bézier curve is the path traced by this point at \(t\) varies between 0 and 1.

What is the Cartesian equation of the curve formed when:
$$P_0=\left(0,1\right)$$ $$P_1=\left(0,0\right)$$ $$P_2=\left(1,0\right)$$

Show answer & extension

Parabola

On a graph of \(y=x^2\), two lines are drawn at \(x=a\) and \(x=-b\) (for \(a,b>0\). The points where these lines intersect the parabola are connected.
What is the y-coordinate of the point where this line intersects the y-axis?

Show answer & extension

Two lines

Let A and B be two straight lines such that the gradient of A is the y-intercept of B and the y-intercept of A is the gradient of B (the gradient and y-intercept of A are not the same). What are the co-ordinates of the point where the lines meet?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

square numbers quadratics books people maths spheres algebra axes ave regular shapes addition complex numbers tangents integration digital products coordinates unit fractions partitions rugby 2d shapes indices angles irreducible numbers combinatorics probability geometry medians the only crossnumber gerrymandering crossnumbers ellipses probabilty factorials calculus planes factors numbers multiplication multiples fractions dates dice integers polynomials elections clocks colouring taxicab geometry products consecutive numbers range chocolate consecutive integers rectangles chess games sum to infinity logic cubics coins albgebra sums shape decahedra wordplay scales sport circles square grids cryptic clues pascal's triangle speed dodecagons prime numbers cards numbers grids binary cube numbers triangle numbers matrices neighbours parabolas median digital clocks polygons squares christmas dominos expansions sets bases powers determinants floors square roots proportion division remainders crosswords grids folding tube maps even numbers percentages geometric mean palindromes perfect numbers area averages odd numbers arrows graphs digits lines tournaments cryptic crossnumbers geometric means 3d shapes trigonometry volume means pentagons chalkdust crossnumber number sequences time shapes perimeter triangles surds differentiation doubling money menace advent tiling star numbers functions balancing routes symmetry quadrilaterals hexagons mean

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025