mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),
$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?

Between quadratics

Source: Luciano Rila (@DrTrapezio)
\(p(x)\) is a quadratic polynomial with real coefficients. For all real numbers \(x\),
$$x^2-2x+2\leq p(x)\leq 2x^2-4x+3$$
\(p(11)=181\). Find \(p(16)\).

Show answer

Balanced sets

A set of points in the plane is called 'balanced' if for any two points \(A\) and \(B\) in the set, there is another point \(C\) in the set such that \(AC=BC\) (here \(AC\) is the distance between \(A\) and \(C\)).
For all \(n\geq3\), find a balanced set of \(n\) points.

Show answer

Bézier curve

A Bézier curve is created as follows:
1) A set of points \(P_0\), ..., \(P_n\) are chosen (in the example \(n=4\)).
2) A set of points \(Q_0\), ..., \(Q_{n-1}\) are defined by \(Q_i=t P_{i+1}+(1-t) P_i\) (shown in green).
3) A set of points \(R_0\), ..., \(R_{n-2}\) are defined by \(R_i=t Q_{i+1}+(1-t) Q_i\) (shown in blue).
.
.
.
\(n\)) After repeating the process \(n\) times, there will be one point. The Bézier curve is the path traced by this point at \(t\) varies between 0 and 1.

What is the Cartesian equation of the curve formed when:
$$P_0=\left(0,1\right)$$ $$P_1=\left(0,0\right)$$ $$P_2=\left(1,0\right)$$

Show answer & extension

Parabola

On a graph of \(y=x^2\), two lines are drawn at \(x=a\) and \(x=-b\) (for \(a,b>0\). The points where these lines intersect the parabola are connected.
What is the y-coordinate of the point where this line intersects the y-axis?

Show answer & extension

Two lines

Let A and B be two straight lines such that the gradient of A is the y-intercept of B and the y-intercept of A is the gradient of B (the gradient and y-intercept of A are not the same). What are the co-ordinates of the point where the lines meet?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles

Tags

floors geometry range differentiation parabolas fractions lines dates symmetry crossnumbers games remainders graphs partitions ave speed arrows people maths menace surds division money dice digits area advent cryptic clues median 3d shapes calculus proportion time bases star numbers triangle numbers circles averages products factors logic squares doubling spheres perimeter volume sums elections clocks numbers polygons cube numbers pascal's triangle dodecagons planes triangles palindromes sum to infinity chalkdust crossnumber colouring unit fractions shapes irreducible numbers sport indices probability cryptic crossnumbers chocolate grids prime numbers crosswords regular shapes factorials books shape scales angles cards tiling christmas means dominos functions the only crossnumber square roots odd numbers balancing folding tube maps percentages crossnumber mean gerrymandering number chess algebra sequences coins rectangles 2d shapes trigonometry routes addition square numbers taxicab geometry integers complex numbers coordinates wordplay ellipses rugby probabilty perfect numbers digital clocks multiples integration quadratics multiplication hexagons

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020