mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

19 December

The diagram below shows three squares and five circles. The four smaller circles are all the same size, and the red square's vertices are the centres of these circles.
The area of the blue square is 14 units. What is the area of the red square?

Show answer

Is it equilateral?

In the diagram below, \(ABDC\) is a square. Angles \(ACE\) and \(BDE\) are both 75°.
Is triangle \(ABE\) equilateral? Why/why not?

Show answer

16 December

There are 204 squares (of any size) in an 8×8 grid of squares. Today's number is the number of rectangles (of any size) in a 2×19 grid of squares

14 December

There are 204 squares (of any size) in an 8×8 grid of squares. Today's number is the number of squares in a 13×13 grid of squares

Squared circle

Each side of a square has a circle drawn on it as diameter. The square is also inscribed in a fifth circle as shown.
Find the ratio of the total area of the shaded crescents to the area of the square.

Show answer

Square deal

This unit square is divided into four regions by a diagonal and a line that connects a vertex to the midpoint of an opposite side. What are the areas of the four regions?

Show answer & extension

Light work

"I don't know if you are fond of puzzles, or not. If you are, try this. ... A gentleman (a nobleman let us say, to make it more interesting) had a sitting-room with only one window in it—a square window, 3 feet high and 3 feet wide. Now he had weak eyes, and the window gave too much light, so (don't you like 'so' in a story?) he sent for the builder, and told him to alter it, so as only to give half the light. Only, he was to keep it square—he was to keep it 3 feet high—and he was to keep it 3 feet wide. How did he do it? Remember, he wasn't allowed to use curtains, or shutters, or coloured glass, or anything of that sort."

Show answer & extension

Chessboard squares

It was once claimed that there are 204 squares on a chessboard. Can you justify this claim?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles

Tags

elections surds multiples advent square numbers taxicab geometry dominos star numbers functions percentages hexagons multiplication dice scales wordplay coordinates unit fractions addition symmetry mean 2d shapes probabilty chess angles remainders palindromes algebra parabolas speed dates fractions sequences cards cube numbers means crossnumbers proportion ave chalkdust crossnumber factors clocks colouring integers books indices crosswords differentiation money square roots regular shapes bases tiling balancing 3d shapes crossnumber coins planes graphs odd numbers complex numbers arrows people maths sport triangles digital clocks circles pascal's triangle spheres partitions games integration shape polygons squares sum to infinity cryptic clues area triangle numbers geometry range menace number quadratics the only crossnumber routes averages digits folding tube maps calculus factorials floors rugby doubling trigonometry dodecagons chocolate cryptic crossnumbers probability prime numbers products shapes logic division perfect numbers time gerrymandering perimeter lines volume rectangles irreducible numbers christmas median grids numbers sums ellipses

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020