mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

24 December

There are six 3-digit numbers with the property that the sum of their digits is equal to the product of their digits. Today's number is the largest of these numbers.

Show answer

6 December

Noel's grandchildren were in born in November in consecutive years. Each year for Christmas, Noel gives each of his grandchildren their age in pounds.
Last year, Noel gave his grandchildren a total of £208. How much will he give them in total this year?

Show answer

20 December

What is the largest number that cannot be written in the form \(10a+27b\), where \(a\) and \(b\) are nonnegative integers (ie \(a\) and \(b\) can be 0, 1, 2, 3, ...)?

Show answer & extension

Square pairs

Source: Maths Jam
Can you order the integers 1 to 16 so that every pair of adjacent numbers adds to a square number?
For which other numbers \(n\) is it possible to order the integers 1 to \(n\) in such a way?

Show answer

14 December

In July, I posted the Combining Multiples puzzle.
Today's number is the largest number that cannot be written in the form \(27a+17b\), where \(a\) and \(b\) are positive integers (or 0).

Combining multiples

In each of these questions, positive integers should be taken to include 0.
1. What is the largest number that cannot be written in the form \(3a+5b\), where \(a\) and \(b\) are positive integers?
2. What is the largest number that cannot be written in the form \(3a+7b\), where \(a\) and \(b\) are positive integers?
3. What is the largest number that cannot be written in the form \(10a+11b\), where \(a\) and \(b\) are positive integers?
4. Given \(n\) and \(m\), what is the largest number that cannot be written in the form \(na+mb\), where \(a\) and \(b\) are positive integers?

Show answer & extension

Subsum

1) In a set of three integers, will there always be two integers whose sum is even?
2) How many integers must there be in a set so that there will always be three integers in the set whose sum is a multiple of 3?
3) How many integers must there be in a set so that there will always be four integers in the set whose sum is even?
4) How many integers must there be in a set so that there will always be three integers in the set whose sum is even?

Show answer & extension

Santa

Each of the letters D, A, Y, S, N, T, B, R and E represents a different non-zero digit. The following sum is true:
$$ \begin{array}{cccccc} D&A&D&D&Y\\ B&E&A&R&D&+\\ \hline S&A&N&T&A \end{array} $$
This has a unique solution, but I haven't found a way to find the solution without brute force. This less insightful sum is also true with the same values of the letters (and should allow you to find the values of the letters using logic alone):
$$ \begin{array}{ccccc} R&A&T&S\\ N&E&R&D&+\\ \hline S&A&N&E \end{array} $$

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles

Tags

factorials sport 3d shapes volume area taxicab geometry coordinates integration perfect numbers dominos crosswords shape elections multiples gerrymandering speed division advent perimeter mean probabilty numbers crossnumbers crossnumber triangle numbers chalkdust crossnumber integers routes shapes indices bases complex numbers remainders square roots circles 2d shapes triangles number money rectangles dodecagons angles sequences proportion digits chess palindromes fractions colouring rugby books polygons squares menace scales cryptic clues addition dice doubling christmas dates products wordplay tiling cube numbers star numbers games cards digital clocks people maths algebra calculus arrows probability unit fractions hexagons geometry trigonometry grids the only crossnumber ellipses averages clocks multiplication percentages means sum to infinity regular shapes square numbers differentiation parabolas cryptic crossnumbers graphs sums lines partitions coins range irreducible numbers time floors chocolate logic factors functions balancing pascal's triangle folding tube maps planes prime numbers median surds quadratics symmetry spheres odd numbers ave

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020