mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

20 December

18 can be written as the sum of 3 consecutive (strictly) positive integers: 5 + 6 + 7.
18 can also be written as the sum of 4 consecutive (strictly) positive integers: 3 + 4 + 5 + 6.
18 is in fact the smallest number that can be written as the sum of both 3 and 4 consecutive (strictly) positive integers.
Today's number is the smallest number that can be written as the sum of both 12 and 13 consecutive (strictly) positive integers.

Show answer

Tags: numbers, sums

24 December

There are six 3-digit numbers with the property that the sum of their digits is equal to the product of their digits. Today's number is the largest of these numbers.

Show answer

6 December

Noel's grandchildren were in born in November in consecutive years. Each year for Christmas, Noel gives each of his grandchildren their age in pounds.
Last year, Noel gave his grandchildren a total of £208. How much will he give them in total this year?

Show answer

20 December

What is the largest number that cannot be written in the form \(10a+27b\), where \(a\) and \(b\) are nonnegative integers (ie \(a\) and \(b\) can be 0, 1, 2, 3, ...)?

Show answer & extension

Square pairs

Source: Maths Jam
Can you order the integers 1 to 16 so that every pair of adjacent numbers adds to a square number?
For which other numbers \(n\) is it possible to order the integers 1 to \(n\) in such a way?

Show answer

14 December

In July, I posted the Combining Multiples puzzle.
Today's number is the largest number that cannot be written in the form \(27a+17b\), where \(a\) and \(b\) are positive integers (or 0).

Combining multiples

In each of these questions, positive integers should be taken to include 0.
1. What is the largest number that cannot be written in the form \(3a+5b\), where \(a\) and \(b\) are positive integers?
2. What is the largest number that cannot be written in the form \(3a+7b\), where \(a\) and \(b\) are positive integers?
3. What is the largest number that cannot be written in the form \(10a+11b\), where \(a\) and \(b\) are positive integers?
4. Given \(n\) and \(m\), what is the largest number that cannot be written in the form \(na+mb\), where \(a\) and \(b\) are positive integers?

Show answer & extension

Subsum

1) In a set of three integers, will there always be two integers whose sum is even?
2) How many integers must there be in a set so that there will always be three integers in the set whose sum is a multiple of 3?
3) How many integers must there be in a set so that there will always be four integers in the set whose sum is even?
4) How many integers must there be in a set so that there will always be three integers in the set whose sum is even?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

axes consecutive integers dice tournaments powers parabolas percentages decahedra people maths polynomials multiples cryptic clues integers remainders factorials triangles consecutive numbers gerrymandering ave integration surds dodecagons fractions sum to infinity quadrilaterals regular shapes range colouring logic sums geometry even numbers functions shape odd numbers 2d shapes the only crossnumber products crossnumbers planes symmetry coordinates chocolate grids quadratics numbers grids numbers area digits cryptic crossnumbers cubics clocks christmas digital products calculus expansions tiling combinatorics chalkdust crossnumber advent neighbours median albgebra dominos trigonometry cube numbers addition factors sport differentiation volume partitions digital clocks square grids binary shapes angles doubling geometric mean wordplay pascal's triangle sequences taxicab geometry averages lines hexagons star numbers multiplication probability menace cards scales perimeter 3d shapes rugby spheres medians chess routes crosswords books circles complex numbers sets bases unit fractions square numbers division ellipses mean speed algebra determinants time proportion irreducible numbers graphs probabilty pentagons folding tube maps triangle numbers squares arrows tangents square roots dates rectangles matrices prime numbers indices perfect numbers geometric means floors palindromes elections number games polygons balancing coins means money

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025