mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

22 December

In bases 3 to 9, the number 112 is: \(11011_3\), \(1300_4\), \(422_5\), \(304_6\), \(220_7\), \(160_8\), and \(134_9\). In bases 3, 4, 6, 8 and 9, these representations contain no digit 2.
There are two 3-digit numbers that contain no 2 in their representations in all the bases between 3 and 9 (inclusive). Today's number is the smaller of these two numbers.

Show answer

22 December

In base 2, 1/24 is 0.0000101010101010101010101010...
In base 3, 1/24 is 0.0010101010101010101010101010...
In base 4, 1/24 is 0.0022222222222222222222222222...
In base 5, 1/24 is 0.0101010101010101010101010101...
In base 6, 1/24 is 0.013.
Therefore base 6 is the lowest base in which 1/24 has a finite number of digits.
Today's number is the smallest base in which 1/10890 has a finite number of digits.
Note: 1/24 always represents 1 divided by twenty-four (ie the 24 is written in decimal).

Show answer

121

Find a number base other than 10 in which 121 is a perfect square.

Show answer & extension

Tags: numbers, bases

Adding bases

Let \(a_b\) denote \(a\) in base \(b\).
Find bases \(A\), \(B\) and \(C\) less than 10 such that \(12_A+34_B=56_C\).

Show answer & extension

Tags: numbers, bases

Reverse bases again

Find three digits \(a\), \(b\) and \(c\) such that \(abc\) in base 10 is equal to \(cba\) in base 9?

Show answer & extension

Tags: numbers, bases

Reverse bases

Find two digits \(a\) and \(b\) such that \(ab\) in base 10 is equal to \(ba\) in base 4.
Find two digits \(c\) and \(d\) such that \(cd\) in base 10 is equal to \(dc\) in base 7.
Find two digits \(e\) and \(f\) such that \(ef\) in base 9 is equal to \(fe\) in base 5.

Show answer & extension

Tags: numbers, bases

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles

Tags

probabilty the only crossnumber factors wordplay sport sums differentiation polygons algebra number irreducible numbers addition hexagons books speed dodecagons shapes probability averages partitions crossnumbers mean indices digital clocks perfect numbers remainders star numbers median factorials taxicab geometry range chocolate triangles shape complex numbers angles dates functions scales fractions elections clocks coordinates spheres multiplication floors rugby balancing regular shapes quadratics proportion cryptic clues sequences dominos calculus geometry doubling time lines folding tube maps 3d shapes tiling bases arrows palindromes triangle numbers surds logic 2d shapes christmas advent colouring perimeter trigonometry unit fractions money odd numbers coins symmetry cryptic crossnumbers sum to infinity dice digits crossnumber square numbers squares rectangles square roots menace means routes products chalkdust crossnumber division numbers percentages area integers integration gerrymandering prime numbers ave cube numbers circles volume people maths games ellipses graphs cards chess planes multiples grids pascal's triangle crosswords parabolas

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020