mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

8 December

The residents of Octingham have 8 fingers. Instead of counting in base ten, they count in base eight: the digits of their numbers represent ones, eights, sixty-fours, two-hundred-and-fifty-sixes, etc instead of ones, tens, hundreds, thousands, etc.
For example, a residents of Octingham would say 12, 22 and 52 instead of our usual numbers 10, 18 and 42.
Today's number is what a resident of Octingham would call 11 squared (where the 11 is also written using the Octingham number system).

Show answer

22 December

In bases 3 to 9, the number 112 is: \(11011_3\), \(1300_4\), \(422_5\), \(304_6\), \(220_7\), \(160_8\), and \(134_9\). In bases 3, 4, 6, 8 and 9, these representations contain no digit 2.
There are two 3-digit numbers that contain no 2 in their representations in all the bases between 3 and 9 (inclusive). Today's number is the smaller of these two numbers.

Show answer

22 December

In base 2, 1/24 is 0.0000101010101010101010101010...
In base 3, 1/24 is 0.0010101010101010101010101010...
In base 4, 1/24 is 0.0022222222222222222222222222...
In base 5, 1/24 is 0.0101010101010101010101010101...
In base 6, 1/24 is 0.013.
Therefore base 6 is the lowest base in which 1/24 has a finite number of digits.
Today's number is the smallest base in which 1/10890 has a finite number of digits.
Note: 1/24 always represents 1 divided by twenty-four (ie the 24 is written in decimal).

Show answer

121

Find a number base other than 10 in which 121 is a perfect square.

Show answer & extension

Tags: numbers, bases

Adding bases

Let \(a_b\) denote \(a\) in base \(b\).
Find bases \(A\), \(B\) and \(C\) less than 10 such that \(12_A+34_B=56_C\).

Show answer & extension

Tags: numbers, bases

Reverse bases again

Find three digits \(a\), \(b\) and \(c\) such that \(abc\) in base 10 is equal to \(cba\) in base 9?

Show answer & extension

Tags: numbers, bases

Reverse bases

Find two digits \(a\) and \(b\) such that \(ab\) in base 10 is equal to \(ba\) in base 4.
Find two digits \(c\) and \(d\) such that \(cd\) in base 10 is equal to \(dc\) in base 7.
Find two digits \(e\) and \(f\) such that \(ef\) in base 9 is equal to \(fe\) in base 5.

Show answer & extension

Tags: numbers, bases

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2020

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018


List of all puzzles

Tags

games lines hexagons differentiation crossnumbers perimeter spheres graphs pascal's triangle shape proportion chess star numbers digits crossnumber floors dodecagons wordplay square roots christmas coins multiplication cryptic crossnumbers quadratics dominos ellipses 2d shapes range angles multiples sport time geometry number cryptic clues calculus parabolas grids quadrilaterals products partitions clocks routes gerrymandering ave scales balancing elections folding tube maps people maths fractions volume books trigonometry dates triangle numbers taxicab geometry numbers percentages shapes integers money sequences cards dice triangles symmetry irreducible numbers addition chalkdust crossnumber rugby advent cube numbers prime numbers planes surds menace bases functions regular shapes factorials coordinates 3d shapes tiling palindromes probabilty digital clocks rectangles algebra circles speed logic median area perfect numbers complex numbers indices division chocolate probability mean averages square numbers squares polygons the only crossnumber combinatorics unit fractions doubling factors arrows means remainders crosswords odd numbers colouring sum to infinity integration sums

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2021