mscroggs.co.uk
mscroggs.co.uk

subscribe

Advent calendar 2023

14 December

The function \(f(x)=ax+b\) (where \(a\) and \(b\) are real constants) satisfies
$$-x^3+2x^2+6x-9\leqslant f(x)\leqslant x^2-2x+3$$
whenever \(0\leqslant x\leqslant3\). What is \(f(200)\)?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

unit fractions dice tiling regular shapes digits dominos sums elections polynomials medians quadrilaterals logic circles triangle numbers balancing axes percentages partitions averages digital clocks games parabolas binary calculus albgebra coordinates money complex numbers volume chalkdust crossnumber proportion ellipses cube numbers dates matrices algebra integration square grids functions expansions square numbers number chess quadratics products taxicab geometry planes cryptic crossnumbers routes christmas addition means symmetry shape integers wordplay indices multiples range arrows 2d shapes perfect numbers tangents consecutive integers probabilty lines odd numbers the only crossnumber graphs menace differentiation consecutive numbers area rugby decahedra sport tournaments perimeter combinatorics prime numbers factors cryptic clues factorials sets fractions powers 3d shapes crossnumbers time numbers grids colouring determinants angles surds crosswords grids hexagons even numbers pentagons neighbours numbers triangles geometry median dodecagons star numbers ave polygons sequences probability gerrymandering doubling cubics folding tube maps rectangles clocks cards geometric means geometric mean shapes palindromes irreducible numbers multiplication sum to infinity speed floors chocolate spheres remainders trigonometry square roots advent squares digital products coins division bases pascal's triangle books mean people maths scales

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025