mscroggs.co.uk
mscroggs.co.uk

subscribe

Advent calendar 2020

18 December

The expansion of \((x+y+z)^3\) is
$$x^3 + y^3 + z^3 + 3x^2y + 3x^2z + 3xy^2 + 3y^2z + 3xz^2 + 3yz^2 + 6xyz.$$
This has 10 terms.
Today's number is the number of terms in the expansion of \((x+y+z)^{26}\).

Show answer

Tags: algebra

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

ellipses advent cryptic clues geometric means geometric mean palindromes symmetry differentiation odd numbers axes percentages means quadratics 2d shapes logic perimeter geometry functions numbers coordinates polynomials integers sport regular shapes dice products partitions taxicab geometry even numbers proportion circles complex numbers division ave tangents sums books combinatorics cube numbers routes doubling indices square numbers multiples averages range spheres powers hexagons factorials irreducible numbers mean elections sum to infinity 3d shapes medians sequences shape crossnumbers albgebra consecutive integers triangle numbers arrows remainders digits factors volume menace star numbers digital products decahedra probabilty binary scales graphs number area cards tiling rectangles people maths matrices rugby parabolas square grids trigonometry probability balancing unit fractions clocks gerrymandering perfect numbers triangles lines dodecagons polygons dates median coins chess square roots the only crossnumber crosswords quadrilaterals integration neighbours planes surds colouring grids pentagons multiplication time christmas fractions chalkdust crossnumber consecutive numbers money numbers grids dominos chocolate addition tournaments squares angles bases wordplay algebra determinants cubics shapes digital clocks expansions speed prime numbers calculus floors folding tube maps cryptic crossnumbers pascal's triangle games sets

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025