Advent calendar 2020

18 December

The expansion of \((x+y+z)^3\) is
$$x^3 + y^3 + z^3 + 3x^2y + 3x^2z + 3xy^2 + 3y^2z + 3xz^2 + 3yz^2 + 6xyz.$$
This has 10 terms.
Today's number is the number of terms in the expansion of \((x+y+z)^{26}\).

Show answer

Tags: algebra


Show me a random puzzle
 Most recent collections 

Advent calendar 2020

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

List of all puzzles


probabilty quadrilaterals circles 3d shapes advent symmetry routes balancing time unit fractions prime numbers grids menace spheres digital clocks ave remainders number gerrymandering sum to infinity hexagons range odd numbers sums factorials surds money the only crossnumber sequences lines percentages multiplication regular shapes coins arrows games triangles median wordplay palindromes chess crosswords rectangles division products calculus cryptic clues shape pascal's triangle partitions perimeter square numbers dice sport cube numbers crossnumber complex numbers chocolate doubling perfect numbers polygons parabolas differentiation people maths bases dominos 2d shapes crossnumbers rugby indices dates speed clocks algebra chalkdust crossnumber mean triangle numbers floors graphs dodecagons integration coordinates scales probability cards christmas volume trigonometry geometry addition star numbers quadratics squares elections shapes integers folding tube maps colouring books proportion planes functions combinatorics numbers means area logic square roots ellipses tiling factors multiples cryptic crossnumbers digits fractions irreducible numbers taxicab geometry angles averages


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2021