mscroggs.co.uk
mscroggs.co.uk

subscribe

Advent calendar 2020

18 December

The expansion of \((x+y+z)^3\) is
$$x^3 + y^3 + z^3 + 3x^2y + 3x^2z + 3xy^2 + 3y^2z + 3xz^2 + 3yz^2 + 6xyz.$$
This has 10 terms.
Today's number is the number of terms in the expansion of \((x+y+z)^{26}\).

Show answer

Tags: algebra

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

floors money rugby dice irreducible numbers partitions coins functions balancing integers neighbours hexagons prime numbers crossnumbers numbers grids cards probability books axes chocolate determinants digital products planes cubics sums graphs cube numbers consecutive numbers fractions elections clocks albgebra unit fractions factorials geometric means colouring digital clocks dodecagons wordplay addition matrices chalkdust crossnumber sum to infinity dominos coordinates routes complex numbers even numbers christmas 3d shapes pentagons proportion advent factors volume means circles multiples scales people maths tangents integration gerrymandering menace speed the only crossnumber quadratics games ellipses squares cryptic clues tiling geometric mean sport time binary median arrows palindromes ave consecutive integers polygons sequences numbers percentages polynomials perfect numbers algebra decahedra mean indices combinatorics range shape lines expansions square roots division 2d shapes number square numbers symmetry angles spheres regular shapes taxicab geometry dates folding tube maps tournaments rectangles differentiation star numbers chess remainders digits surds sets quadrilaterals odd numbers bases square grids area trigonometry parabolas multiplication triangles cryptic crossnumbers logic geometry powers grids perimeter triangle numbers products shapes probabilty doubling pascal's triangle medians averages calculus crosswords

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025