mscroggs.co.uk
mscroggs.co.uk

subscribe

Advent calendar 2020

18 December

The expansion of \((x+y+z)^3\) is
$$x^3 + y^3 + z^3 + 3x^2y + 3x^2z + 3xy^2 + 3y^2z + 3xz^2 + 3yz^2 + 6xyz.$$
This has 10 terms.
Today's number is the number of terms in the expansion of \((x+y+z)^{26}\).

Show answer

Tags: algebra

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

floors differentiation unit fractions the only crossnumber sequences sets volume combinatorics taxicab geometry consecutive numbers angles circles balancing sums axes square roots geometric means gerrymandering algebra pascal's triangle lines matrices fractions games indices mean geometric mean perfect numbers cubics coordinates probabilty books albgebra integers neighbours christmas routes dominos factorials people maths perimeter 2d shapes numbers grids area wordplay digital clocks triangles dodecagons integration advent binary chocolate sport arrows odd numbers products cryptic crossnumbers tangents proportion addition crossnumbers doubling crosswords trigonometry multiplication polynomials scales triangle numbers money logic expansions rugby multiples functions irreducible numbers spheres calculus digital products ave cards even numbers square grids digits consecutive integers hexagons quadrilaterals coins factors remainders geometry palindromes tiling dice powers division polygons quadratics chalkdust crossnumber time pentagons menace bases range graphs probability cryptic clues numbers tournaments averages number symmetry dates shape colouring cube numbers grids chess planes complex numbers elections surds percentages star numbers prime numbers means speed square numbers determinants partitions median ellipses parabolas folding tube maps squares medians regular shapes decahedra shapes rectangles clocks sum to infinity 3d shapes

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025