Advent calendar 2020

18 December

The expansion of \((x+y+z)^3\) is
$$x^3 + y^3 + z^3 + 3x^2y + 3x^2z + 3xy^2 + 3y^2z + 3xz^2 + 3yz^2 + 6xyz.$$
This has 10 terms.
Today's number is the number of terms in the expansion of \((x+y+z)^{26}\).

Show answer

Tags: algebra


Show me a random puzzle
 Most recent collections 

Advent calendar 2020

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

List of all puzzles


number perfect numbers folding tube maps colouring digital clocks median addition complex numbers perimeter dodecagons irreducible numbers cube numbers quadrilaterals arrows range square numbers polygons crossnumbers the only crossnumber advent dice mean crossnumber integration scales routes speed circles volume functions algebra star numbers numbers doubling chalkdust crossnumber coordinates rugby digits factors logic ellipses 3d shapes calculus elections cards probability floors area factorials percentages sums ave time partitions square roots probabilty odd numbers 2d shapes tiling fractions differentiation gerrymandering integers remainders parabolas shape unit fractions division regular shapes pascal's triangle games balancing products grids crosswords palindromes angles sum to infinity cryptic crossnumbers christmas books quadratics multiplication money hexagons proportion trigonometry combinatorics symmetry sport chess people maths rectangles multiples dates spheres chocolate surds means lines shapes cryptic clues sequences planes triangles bases coins wordplay prime numbers dominos squares geometry averages graphs triangle numbers indices menace taxicab geometry clocks


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2021