mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

19 December

The diagram to the right shows a triangle. Two of the sides of the triangle have been split into three pieces, with lines drawn from the opposite vertex. In total, the diagram now contains 27 triangles of any size.
Another triangle has two of its sides split into eight pieces, with lines drawn from the opposite vertex. How many triangles (of any size) would this create?

Show answer

18 December

The expansion of \((x+y+z)^3\) is
$$x^3 + y^3 + z^3 + 3x^2y + 3x^2z + 3xy^2 + 3y^2z + 3xz^2 + 3yz^2 + 6xyz.$$
This has 10 terms.
Today's number is the number of terms in the expansion of \((x+y+z)^{26}\).

Show answer

Tags: algebra

17 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums and product are correct. Today's number is the product of the numbers in the red boxes.
++= 16
+ + +
++= 8
+ + +
××= 288
=
11
=
14
=
20

Show answer

Tags: numbers, grids

16 December

Solve the crossnumber to find today's number. No number starts with 0.

Show answer

15 December

When talking to someone about this Advent calendar, you told them that the combination of XMAS and MATHS is GREAT. They were American, so asked you if the combination of XMAS and MATH is great; you said SURE. You asked them their name; they said SAM.
Each of the letters E, X, M, A, T, H, S, R, U, and G stands for a different digit 0 to 9. The following sums are correct:
Today's number is SAM. To help you get started, the letter T represents 4.

Show answer

14 December

The numbers 33, 404 and 311 contain duplicate digits. The numbers 120, 15 and 312 do not.
How many numbers between 10 and 999 (inclusive) contain no duplicate digits?

Show answer

13 December

There are 6 ways to split the sequence of the numbers 1 to 5 into three shorter sequences:
Today's number is the number of ways to split the sequence of the numbers 1 to 10 into five shorter sequences.

Show answer

12 December

The diagram to the left shows a large black square. Inside this square, two red squares have been drawn. (The sides of the red squares are parallel to the sides of the black square; each red square shares a vertex with the black square; and the two red squares share a vertex.) A blue quadrilateral has then been drawn with vertices at two corners of the black square and the centres of the red squares.
The area of the blue quadrilateral is 167. What is the area of the black square?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

symmetry perimeter digital clocks partitions range cards parabolas gerrymandering unit fractions median chocolate polygons averages fractions differentiation combinatorics dates decahedra integration chalkdust crossnumber mean circles elections geometric mean tournaments angles digital products expansions consecutive integers planes chess sequences coins sums indices squares integers star numbers complex numbers quadrilaterals matrices games ellipses tangents palindromes taxicab geometry grids arrows triangle numbers books cubics division logic triangles area time rectangles graphs neighbours products dodecagons sum to infinity colouring numbers grids tiling square grids numbers christmas pascal's triangle multiples medians determinants factors irreducible numbers albgebra hexagons surds quadratics trigonometry volume doubling wordplay dice square numbers crossnumbers pentagons algebra geometric means dominos 3d shapes sets powers factorials percentages clocks shapes ave means routes probability number coordinates cryptic crossnumbers cryptic clues even numbers bases balancing addition floors multiplication regular shapes sport consecutive numbers calculus perfect numbers people maths remainders digits cube numbers scales probabilty proportion 2d shapes square roots odd numbers the only crossnumber axes polynomials binary spheres menace speed shape folding tube maps lines crosswords functions geometry advent prime numbers rugby money

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025