mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

20 December

The integers from 2 to 14 (including 2 and 14) are written on 13 cards (one number per card). You and a friend take it in turns to take one of the numbers.
When you have both taken five numbers, you notice that the product of the numbers you have collected is equal to the product of the numbers that your friend has collected. What is the product of the numbers on the three cards that neither of you has taken?

Show answer

18 December

The final round of game show starts with £1,000,000. You and your opponent take it in turn to take any value between £1 and £900. At the end of the round, whoever takes the final pound gets to take the money they have collected home, while the other player leaves with nothing.
You get to take an amount first. How much money should you take to be certain that you will not go home with nothing?

Show answer

Tags: numbers, games

17 December

Eve picks a three digit number then reverses its digits to make a second number. The second number is larger than her original number.
Eve adds her two numbers together; the result is 584. What was Eve's original number?

Show answer

16 December

Arrange the digits 1-9 in a 3×3 square so that: the median number in the first row is 6; the median number in the second row is 3; the mean of the numbers in the third row is 4; the mean of the numbers in the second column is 7; the range of the numbers in the third column is 2, The 3-digit number in the first column is today's number.
median 6
median 3
mean 4
today's numbermean 7range 2

Show answer

15 December

There are 5 ways to make 30 by multiplying positive integers (including the trivial way):
Today's number is the number of ways of making 30030 by multiplying.

Show answer

14 December

During one day, a digital clock shows times from 00:00 to 23:59. How many times during the day do the four digits shown on the clock add up to 14?

Show answer

11 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the red digits.
+÷= 2
+ ÷ ÷
÷÷= 3
÷ - ÷
÷÷= 1
=
2
=
1
=
1

Show answer

Tags: grids, numbers

9 December

Arrange the digits 1-9 in a 3×3 square so that: all the digits in the first row are odd; all the digits in the second row are even; all the digits in the third row are multiples of 3; all the digits in the second column are (strictly) greater than 6; all the digits in the third column are non-prime. The number in the first column is today's number.
all odd
all even
all multiples of 3
today's numberall >6all non-prime

Show answer

Tags: numbers, grids

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

rugby cards trigonometry cube numbers integers square grids ave geometric mean balancing 3d shapes expansions colouring hexagons averages area cryptic clues games addition money digits multiplication squares scales neighbours logic shape partitions bases integration mean decahedra differentiation quadrilaterals lines rectangles albgebra chess geometric means folding tube maps spheres regular shapes books tournaments probabilty calculus elections routes symmetry shapes percentages speed parabolas star numbers functions sport algebra square numbers quadratics dodecagons chocolate geometry axes irreducible numbers dominos numbers grids number odd numbers tangents angles grids complex numbers even numbers polynomials wordplay square roots numbers pentagons menace clocks sets digital products products pascal's triangle planes coins coordinates binary probability perfect numbers determinants people maths volume time ellipses circles proportion dice fractions factorials floors polygons division cubics crossnumbers multiples matrices digital clocks gerrymandering means perimeter graphs powers tiling taxicab geometry surds remainders sum to infinity triangles 2d shapes consecutive numbers crosswords indices consecutive integers combinatorics range factors sums medians advent palindromes sequences chalkdust crossnumber doubling arrows christmas unit fractions the only crossnumber triangle numbers prime numbers median dates cryptic crossnumbers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025