Advent calendar 2019

20 December

The integers from 2 to 14 (including 2 and 14) are written on 13 cards (one number per card). You and a friend take it in turns to take one of the numbers.
When you have both taken five numbers, you notice that the product of the numbers you have collected is equal to the product of the numbers that your friend has collected. What is the product of the numbers on the three cards that neither of you has taken?

Show answer


Show me a random puzzle
 Most recent collections 

Advent calendar 2020

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

List of all puzzles


fractions chocolate graphs games crosswords books 3d shapes shape indices remainders taxicab geometry differentiation star numbers sequences 2d shapes percentages routes quadrilaterals circles elections doubling coins spheres digits triangles colouring cube numbers dominos quadratics balancing volume perimeter combinatorics unit fractions gerrymandering coordinates probability chalkdust crossnumber multiples triangle numbers addition regular shapes irreducible numbers crossnumber crossnumbers squares multiplication mean dice cryptic clues digital clocks dodecagons functions factorials angles integers trigonometry christmas square roots wordplay speed folding tube maps chess people maths means symmetry parabolas products grids numbers dates factors calculus advent logic probabilty prime numbers geometry integration time area sport odd numbers palindromes arrows bases scales shapes complex numbers median lines partitions planes clocks algebra sum to infinity sums proportion tiling cards menace number ave surds pascal's triangle hexagons polygons the only crossnumber cryptic crossnumbers square numbers division money floors perfect numbers range averages ellipses rectangles rugby


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2021