mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

21 December

The factors of 6 (excluding 6 itself) are 1, 2 and 3. \(1+2+3=6\), so 6 is a perfect number.
Today's number is the only three digit perfect number.

20 December

What is the largest number that cannot be written in the form \(10a+27b\), where \(a\) and \(b\) are nonnegative integers (ie \(a\) and \(b\) can be 0, 1, 2, 3, ...)?

Show answer & extension

Elastic numbers

Throughout this puzzle, expressions like \(AB\) will represent the digits of a number, not \(A\) multiplied by \(B\).
A two-digit number \(AB\) is called elastic if:
  1. \(A\) and \(B\) are both non-zero.
  2. The numbers \(A0B\), \(A00B\), \(A000B\), ... are all divisible by \(AB\).
There are three elastic numbers. Can you find them?

Show answer & extension

16 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the largest number than can be made from the digits in red boxes.
××= 6
× × ×
××= 180
× × ×
××= 336
=
32
=
70
=
162

14 December

In July, I posted the Combining Multiples puzzle.
Today's number is the largest number that cannot be written in the form \(27a+17b\), where \(a\) and \(b\) are positive integers (or 0).

8 December

Today's number is the second smallest number that can be written as a×b×c×d×e×f×g×h×i, where a,b,...,i are all integers greater than 1.

5 December

Today's number is the number of ways that 35 can be written as the sum of distinct numbers, with none of the numbers in the sum being divisible by 9.
Clarification: By "numbers", I mean (strictly) positive integers. The sum of the same numbers in a different order is counted as the same sum: eg. 1+34 and 34+1 are not different sums. The trivial sum consisting of just the number 35 counts as a sum.

Largest odd factors

Pick a number. Call it \(n\). Write down all the numbers from \(n+1\) to \(2n\) (inclusive). For example, if you picked 7, you would write:
$$8,9,10,11,12,13,14$$
Below each number, write down its largest odd factor. Add these factors up. What is the result? Why?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

chalkdust crossnumber quadratics mean probability planes polynomials percentages lines odd numbers sum to infinity bases geometric means decahedra triangle numbers integers sequences squares factors coordinates matrices range even numbers prime numbers star numbers digital products chocolate arrows square numbers binary complex numbers scales tiling determinants albgebra surds dominos sets addition doubling geometry shape logic trigonometry proportion pentagons games cryptic clues people maths factorials probabilty digits calculus sums coins fractions rugby cubics elections 2d shapes digital clocks routes advent taxicab geometry folding tube maps triangles polygons crossnumbers hexagons christmas perimeter cards circles grids money unit fractions medians division speed time means gerrymandering wordplay dice combinatorics neighbours number tangents dodecagons ellipses balancing algebra menace clocks consecutive numbers books the only crossnumber square roots graphs functions averages angles colouring 3d shapes dates chess products tournaments indices floors median ave shapes consecutive integers parabolas multiplication volume geometric mean perfect numbers spheres area powers multiples numbers grids crosswords quadrilaterals axes expansions irreducible numbers partitions integration differentiation pascal's triangle regular shapes cube numbers sport rectangles symmetry remainders palindromes square grids numbers cryptic crossnumbers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025