mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

4 December

There are 5 ways to tile a 3×2 rectangle with 2×2 squares and 2×1 dominos.
Today's number is the number of ways to tile a 9×2 rectangle with 2×2 squares and 2×1 dominos.

Show answer

3 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the largest number you can make with the digits in the red boxes.
++= 21
+ × ×
++= 10
+ ÷ ×
++= 14
=
21
=
10
=
14

Show answer

Tags: numbers, grids

2 December

You have 15 sticks of length 1cm, 2cm, ..., 15cm (one of each length). How many triangles can you make by picking three sticks and joining their ends?
Note: Three sticks (eg 1, 2 and 3) lying on top of each other does not count as a triangle.
Note: Rotations and reflections are counted as the same triangle.

Show answer

1 December

If you write out the numbers from 1 to 1000 (inclusive), how many times will you write the digit 1?

Show answer

Coloured weights

You have six weights. Two of them are red, two are blue, two are green. One weight of each colour is heavier than the other; the three heavy weights all weigh the same, and the three lighter weights also weigh the same.
Using a scale twice, can you split the weights into two sets by weight?

Show answer & extension

Not Roman numerals

The letters \(I\), \(V\) and \(X\) each represent a different digit from 1 to 9. If
$$VI\times X=VVV,$$
what are \(I\), \(V\) and \(X\)?

Show answer

Advent 2018 logic puzzle

2018's Advent calendar ended with a logic puzzle: It's nearly Christmas and something terrible has happened: one of Santa's five helpers—Meg Reeny, Jo Ranger, Kip Urples, Fred Metcalfe, and Bob Luey—has stolen all the presents during the North Pole's annual Sevenstival. You need to find the culprit before Christmas is ruined for everyone.
Every year in late November, Santa is called away from the North Pole for a ten hour meeting in which a judgemental group of elders decide who has been good and who has been naughty. While Santa is away, it is traditional for his helpers celebrate Sevenstival. Sevenstival gets in name from the requirement that every helper must take part in exactly seven activities during the celebration; this year's available activities were billiards, curling, having lunch, solving maths puzzles, table tennis, skiing, chess, climbing and ice skating.
Each activity must be completed in one solid block: it is forbidden to spend some time doing an activity, take a break to do something else then return to the first activity. This year's Sevenstival took place between 0:00 and 10:00 (North Pole standard time).
During this year's Sevenstival, one of Santa's helpers seven activities included stealing all the presents from Santa's workshop. Santa's helpers have 24 pieces of information to give to you, but the culprit is going to lie about everything in an attempt to confuse you, so be careful who you trust.
Here are the clues:
1
Meg says: "Between 2:33 and curling, I played billiards with Jo."
15
Kip says: "The curling match lasted 323 mins."
24
Fred says: "In total, Jo and Meg spent 1 hour and 57 mins having lunch."
8
Meg says: "A total of 691 mins were spent solving maths puzzles."
17
Jo says: "I played table tennis with Fred and Meg for 2+8+5 mins."
23
Meg says: "1:32 was during my 83 min ski"
7
Meg says: "The number of mins the curling game lasted is a factor of 969."
16
Jo says: "I started skiing with Bob, and finished before Bob at 8:45."
5
Jo says: "At 4:45, Fred, Bob, Kip and I started a curling match."
14
Fred says: "I spent 135 mins playing chess with Meg."
20
Meg says: "Jo started skiing at 7:30."
4
Bob says: "I went for a 150 min ski."
13
Kip says: "Jo started skiing at 6:08."
22
Fred says: "Bob, Kip and I finished lunch at 3:30."
6
Bob says: "I played billiards with Kip from 0:00 until 1:21."
12
Fred says: "Between 3:30 and 4:45, there were 3 people climbing."
21
Fred says: "In total, Bob, Meg and I spent 269 mins ice skating."
10
Meg says: "Between 0:00 and 1:10, I was ice skating."
19
Jo says: "At 1:12, Fred and I were both in the middle of maths puzzles."
3
Jo says: "Straight after curling, I had a 108 min game of chess with Kip."
9
Fred says: "At 2:52, I started having lunch with Bob and Kip."
18
Jo says: "I spent 153 mins solving maths puzzles."
2
Fred says: "I was solving maths puzzles for 172 mins."
11
Meg says: "I spent 108 mins solving maths puzzles with Bob."

Show answer

24 December

1,0,2,0,1,1
The sequence of six numbers above has two properties:
  1. Each number is either 0, 1 or 2.
  2. Each pair of consecutive numbers adds to (strictly) less than 3.
Today's number is the number of sequences of six numbers with these two properties
Tags: numbers

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

the only crossnumber numbers integers odd numbers scales polygons squares angles multiplication hexagons matrices surds sport trigonometry doubling crosswords advent area gerrymandering even numbers sums dominos cryptic crossnumbers factorials irreducible numbers rugby sets division symmetry means range numbers grids medians cryptic clues planes square grids differentiation star numbers factors graphs perfect numbers wordplay powers quadrilaterals tournaments ellipses polynomials albgebra colouring digital products complex numbers combinatorics cube numbers perimeter people maths chocolate crossnumbers calculus dates books probabilty parabolas volume shape axes floors addition digits triangles games circles palindromes expansions determinants geometric mean binary algebra proportion rectangles multiples median digital clocks products indices quadratics mean averages time 3d shapes remainders taxicab geometry folding tube maps consecutive integers lines cards probability cubics prime numbers bases grids pentagons speed sequences dodecagons money clocks number fractions regular shapes geometry elections ave chalkdust crossnumber menace square numbers tiling sum to infinity coins geometric means spheres neighbours logic pascal's triangle routes consecutive numbers dice balancing tangents square roots triangle numbers shapes unit fractions decahedra functions percentages integration coordinates 2d shapes christmas chess partitions arrows

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025