mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

14 December

During one day, a digital clock shows times from 00:00 to 23:59. How many times during the day do the four digits shown on the clock add up to 14?

Show answer

13 December

Each clue in this crossnumber (except 5A) gives a property of that answer that is true of no other answer. For example: 7A is a multiple of 13; but 1A, 3A, 5A, 1D, 2D, 4D, and 6D are all not multiples of 13. No number starts with 0.

Show answer

12 December

For a general election, the Advent isles are split into 650 constituencies. In each constituency, exactly 99 people vote: everyone votes for one of the two main parties: the Rum party or the Land party. The party that receives the most votes in each constituency gets an MAP (Member of Advent Parliament) elected to parliament to represent that constituency.
In this year's election, exactly half of the 64350 total voters voted for the Rum party. What is the largest number of MAPs that the Rum party could have?

Show answer

11 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the red digits.
+÷= 2
+ ÷ ÷
÷÷= 3
÷ - ÷
÷÷= 1
=
2
=
1
=
1

Show answer

Tags: grids, numbers

10 December

For all values of \(x\), the function \(f(x)=ax+b\) satisfies
$$8x-8-x^2\leqslant f(x)\leqslant x^2.$$
What is \(f(65)\)?
Edit: The left-hand quadratic originally said \(8-8x-x^2\). This was a typo and has now been corrected.

Show answer

9 December

Arrange the digits 1-9 in a 3×3 square so that: all the digits in the first row are odd; all the digits in the second row are even; all the digits in the third row are multiples of 3; all the digits in the second column are (strictly) greater than 6; all the digits in the third column are non-prime. The number in the first column is today's number.
all odd
all even
all multiples of 3
today's numberall >6all non-prime

Show answer

Tags: numbers, grids

8 December

Carol uses the digits from 0 to 9 (inclusive) exactly once each to write five 2-digit even numbers, then finds their sum. What is the largest number she could have obtained?

Show answer

Tags: numbers

7 December

The sum of the coefficients in the expansion of \((x+1)^5\) is 32. Today's number is the sum of the coefficients in the expansion of \((2x+1)^5\).

Show answer

Tags: algebra

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

numbers dodecagons angles division dominos binary numbers grids integration cube numbers probability unit fractions people maths volume lines averages polynomials quadratics geometric means proportion rugby expansions digits pentagons the only crossnumber ave medians mean algebra 3d shapes sums cubics books chess matrices crosswords complex numbers perimeter prime numbers circles routes elections scales dice cryptic crossnumbers partitions remainders coins combinatorics time area floors doubling fractions ellipses speed regular shapes rectangles planes neighbours probabilty square grids powers multiples dates money integers spheres factorials colouring indices 2d shapes bases surds clocks chocolate sequences functions digital products crossnumbers number square numbers advent geometric mean grids balancing christmas square roots multiplication wordplay albgebra graphs menace coordinates tournaments sum to infinity shape folding tube maps taxicab geometry gerrymandering geometry cards trigonometry arrows quadrilaterals even numbers digital clocks determinants triangles consecutive numbers percentages hexagons pascal's triangle consecutive integers sport star numbers differentiation shapes axes sets polygons irreducible numbers decahedra chalkdust crossnumber factors games addition palindromes odd numbers triangle numbers parabolas range tangents median means calculus tiling cryptic clues logic symmetry perfect numbers products squares

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025