mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

16 December

Some numbers can be written as the sum of two or more consecutive positive integers, for example:
$$7=3+4$$ $$18=5+6+7$$
Some numbers (for example 4) cannot be written as the sum of two or more consecutive positive integers. What is the smallest three-digit number that cannot be written as the sum of two or more consecutive positive integers?

Show answer & extension

15 December

The arithmetic mean of a set of \(n\) numbers is computed by adding up all the numbers, then dividing the result by \(n\). The geometric mean of a set of \(n\) numbers is computed by multiplying all the numbers together, then taking the \(n\)th root of the result.
The arithmetic mean of the digits of the number 132 is \(\tfrac13(1+3+2)=2\). The geometric mean of the digits of the number 139 is \(\sqrt[3]{1\times3\times9}\)=3.
What is the smallest three-digit number whose first digit is 4 and for which the arithmetic and geometric means of its digits are both non-zero integers?

Show answer & extension

14 December

The function \(f(x)=ax+b\) (where \(a\) and \(b\) are real constants) satisfies
$$-x^3+2x^2+6x-9\leqslant f(x)\leqslant x^2-2x+3$$
whenever \(0\leqslant x\leqslant3\). What is \(f(200)\)?

Show answer

13 December

Today's number is given in this crossnumber. No number in the completed grid starts with 0.

Show answer

12 December

What is the smallest value of \(n\) such that
$$\frac{500!\times499!\times498!\times\dots\times1!}{n!}$$
is a square number?

Show answer

11 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 15
+ + ÷
+= 10
+ ×
÷×= 3
=
16
=
1
=
30

Show answer

Tags: numbers, grids

10 December

How many integers are there between 100 and 1000 whose digits add up to an even number?

Show answer

9 December

The diagram below shows a rectangle. Two of its sides have been coloured blue. A red line has been drawn from two of its vertices to the midpoint of a side.
The total length of the blue lines is 50cm. The total length of the red lines is also 50cm. What is the area of the rectangle (in cm2)?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

books ellipses addition chocolate odd numbers rectangles dates sport grids quadrilaterals square numbers quadratics probability digits routes area factorials ave powers planes digital products christmas cube numbers crosswords axes albgebra triangle numbers percentages dodecagons doubling hexagons probabilty clocks trigonometry balancing numbers grids decahedra star numbers tournaments complex numbers digital clocks partitions binary triangles remainders products tangents games circles people maths combinatorics sequences angles lines chess 2d shapes sets expansions shape unit fractions squares folding tube maps functions money the only crossnumber shapes integers advent even numbers regular shapes geometric mean dice pentagons consecutive numbers taxicab geometry perimeter elections tiling 3d shapes differentiation scales cryptic crossnumbers wordplay proportion dominos multiplication fractions gerrymandering means spheres logic sum to infinity averages perfect numbers integration coins parabolas graphs pascal's triangle square roots range consecutive integers floors matrices medians colouring cards prime numbers mean algebra symmetry polygons rugby median division polynomials bases menace palindromes determinants neighbours geometric means speed crossnumbers geometry sums cryptic clues number chalkdust crossnumber calculus surds cubics irreducible numbers time numbers coordinates multiples volume factors indices square grids arrows

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025