Find them all

Find all continuous positive functions, \(f\) on \([0,1]\) such that:
$$\int_0^1 f(x) dx=1\\ \mathrm{and }\int_0^1 xf(x) dx=\alpha\\ \mathrm{and }\int_0^1 x^2f(x) dx=\alpha^2$$

Show answer & extension

If you enjoyed this puzzle, check out Sunday Afternoon Maths XXXIV,
puzzles about calculus, or a random puzzle.


Show me a random puzzle
 Most recent collections 

Advent calendar 2020

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

List of all puzzles


addition quadrilaterals scales folding tube maps 2d shapes rugby digital clocks indices products logic bases probability circles cryptic crossnumbers trigonometry ellipses surds games mean rectangles balancing sum to infinity taxicab geometry square roots floors square numbers shapes colouring chocolate money menace triangles the only crossnumber coins clocks odd numbers calculus arrows spheres algebra percentages prime numbers speed range proportion complex numbers unit fractions gerrymandering multiples combinatorics elections numbers graphs volume partitions factors star numbers christmas hexagons division triangle numbers planes angles digits dominos area symmetry median sequences coordinates cards perfect numbers integers crossnumbers wordplay cryptic clues chalkdust crossnumber polygons multiplication probabilty people maths ave integration dodecagons regular shapes remainders sums dice lines shape crosswords averages routes dates cube numbers chess means perimeter doubling squares functions crossnumber palindromes fractions geometry sport 3d shapes books grids irreducible numbers tiling pascal's triangle quadratics factorials number differentiation time parabolas advent


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2021