mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

17 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 10
+ × ×
++= 12
+ +
++= 23
=
10
=
12
=
23

Show answer

Tags: numbers, grids

16 December

Noel writes the integers from 1 to 1000 in a large triangle like this:
The rightmost number in the row containing the number 6 is 9. What is the rightmost number in the row containing the number 300?

Show answer

Tags: numbers

15 December

There are 3 even numbers between 3 and 9.
What is the only odd number \(n\) such that there are \(n\) even numbers between \(n\) and 729?

Show answer & extension

12 December

The determinant of the 2 by 2 matrix \(\begin{pmatrix}a&b\\c&d\end{pmatrix}\) is \(ad-bc\).
If a 2 by 2 matrix's entries are all in the set \(\{1, 2, 3\}\), the largest possible deteminant of this matrix is 8.
What is the largest possible determinant of a 2 by 2 matrix whose entries are all in the set \(\{1, 2, 3, ..., 12\}\)?

Show answer & extension

11 December

There are five 3-digit numbers whose digits are all either 1 or 2 and who do not contain two 2s in a row: 111, 112, 121, 211, and 212.
How many 14-digit numbers are there whose digits are all either 1 or 2 and who do not contain two 2s in a row?

Show answer

9 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the largest number you can make with the digits in the red boxes.
++= 20
+ + ÷
+= 0
+ ×
÷×= 12
=
22
=
6
=
2

Show answer

Tags: numbers, grids

6 December

There are 21 three-digit integers whose digits are all non-zero and whose digits add up to 8.
How many positive integers are there whose digits are all non-zero and whose digits add up to 8?

Show answer & extension

5 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
×÷= 15
+ + +
×÷= 14
×÷= 27
=
9
=
5
=
5

Show answer

Tags: numbers, grids

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

integers gerrymandering the only crossnumber dice consecutive numbers dodecagons factors sequences grids digital products colouring surds calculus polygons planes squares pascal's triangle factorials digital clocks probability triangles irreducible numbers perfect numbers percentages pentagons dominos polynomials proportion area medians chalkdust crossnumber tangents christmas coins chocolate dates geometric mean indices shapes 2d shapes multiples sum to infinity books menace mean axes geometry taxicab geometry floors crosswords division cube numbers time binary prime numbers sets combinatorics cryptic crossnumbers doubling digits cards expansions ave matrices rectangles circles consecutive integers multiplication decahedra scales wordplay money routes rugby cryptic clues triangle numbers square roots spheres averages complex numbers arrows algebra hexagons clocks partitions geometric means even numbers star numbers crossnumbers numbers grids quadratics sums parabolas square grids tournaments speed perimeter number addition albgebra range angles logic games probabilty determinants advent shape coordinates remainders odd numbers volume cubics sport graphs people maths palindromes neighbours quadrilaterals lines unit fractions 3d shapes numbers bases trigonometry fractions square numbers differentiation functions means folding tube maps regular shapes elections ellipses tiling symmetry balancing integration powers chess median products

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025