mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

3n+1

Let \(S=\{3n+1:n\in\mathbb{N}\}\) be the set of numbers one more than a multiple of three.
(i) Show that \(S\) is closed under multiplication.
ie. Show that if \(a,b\in S\) then \(a\times b\in S\).
Let \(p\in S\) be irreducible if \(p\not=1\) and the only factors of \(p\) in \(S\) are \(1\) and \(p\). (This is equivalent to the most commonly given definition of prime.)
(ii) Can each number in \(S\) be uniquely factorised into irreducibles?

Show answer & extension

2009

2009 unit cubes are glued together to form a cuboid. A pack, containing 2009 stickers, is opened, and there are enough stickers to place 1 sticker on each exposed face of each unit cube.
How many stickers from the pack are left?

Show answer & extension

Triangles between squares

Prove that there are never more than two triangle numbers between two consecutive square numbers.

Show answer & extension

Twenty-one

Scott and Virgil are playing a game. In the game the first player says 1, 2 or 3, then the next player can add 1, 2 or 3 to the number and so on. The player who is forced to say 21 or above loses. The first game went like so:
Scott: 3
Virgil: 4
Scott: 5
Virgil: 6
Scott: 9
Virgil: 12
Scott: 15
Virgil 17
Scott: 20
Virgil: 21
Virgil loses.
To give him a better chance of winning, Scott lets Virgil choose whether to go first or second in the next game. What should Virgil do?

Show answer & extension

Tags: numbers, games

Polya strikes out

Write the numbers 1, 2, 3, ... in a row. Strike out every third number beginning with the third. Write down the cumulative sums of what remains:
1, 2, 3, 4, 5, 6, 7, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 2, 4, 5, 7, ...
1=1; 1+2=3; 1+2+4=7; 1+2+4+5=12; 1+2+4+5+7=19; ...
1, 3, 7, 12, 19, ...
Now strike out every second number beginning with the second. Write down the cumulative sums of what remains. What is the final sequence? Why do you get this sequence?

Show answer & extension

Tags: numbers

Exact change

In the UK, the coins less than £1 are 1p, 2p, 5p, 10p, 20p and 50p. How many coins would I need to carry in my pocket so that I could make any value from 1p to 99p?
In the US, the coins less than $1 are 1¢, 5¢, 10¢, 25¢. How many coins would I need to carry in my pocket so that I could make any value from 1¢ to 99¢?

Show answer & extension

Tags: money, numbers

Ten digit number

Can you create a 10-digit number, where the first digit is how many zeros in the number, the second digit is how many 1s in the number etc. until the tenth digit which is how many 9s in the number?

Show answer & extension

Tags: numbers

Mrs. Coldcream objected

"I object," said Councillor Mrs. Coldcream. "I see no reason why the boys should be so favoured at the expense of the girls."
This was at a meeting of the Holmshire Education Committee. It had been proposed to award 19 scholarships totalling £1000 to boys and girls of the county. It had been proposed that each girl receive a set amount and each boy receive £30 more than each girl.
Mrs. Coldcream pressed her point with such fervour that it was decided to reallocate the money. Each girl would receive £8 more than originally proposed, with the boys' scholarships scaled down accordingly.
How much did each boy and each girl receive?

Show answer & extension

Tags: numbers

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

decahedra combinatorics polygons percentages factorials probability median products number mean 2d shapes parabolas regular shapes cryptic crossnumbers volume cryptic clues numbers folding tube maps partitions dodecagons averages factors algebra christmas ave square roots triangles gerrymandering sequences perfect numbers scales rectangles axes consecutive numbers differentiation dates unit fractions lines binary irreducible numbers trigonometry elections pentagons circles ellipses functions shape albgebra integers multiples tournaments even numbers floors perimeter proportion shapes chess balancing indices chocolate symmetry rugby chalkdust crossnumber books grids time addition means polynomials sums numbers grids hexagons triangle numbers sets planes wordplay routes multiplication dice cube numbers neighbours taxicab geometry spheres quadratics geometric mean tiling coordinates logic sum to infinity 3d shapes area sport squares cards expansions angles graphs speed powers money square numbers star numbers advent range calculus probabilty matrices coins prime numbers digital clocks geometric means clocks determinants complex numbers palindromes games people maths digits crossnumbers odd numbers pascal's triangle tangents integration quadrilaterals surds consecutive integers arrows fractions colouring division doubling dominos cubics square grids medians crosswords menace digital products remainders geometry the only crossnumber bases

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025