mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

15 December

The arithmetic mean of a set of \(n\) numbers is computed by adding up all the numbers, then dividing the result by \(n\). The geometric mean of a set of \(n\) numbers is computed by multiplying all the numbers together, then taking the \(n\)th root of the result.
The arithmetic mean of the digits of the number 132 is \(\tfrac13(1+3+2)=2\). The geometric mean of the digits of the number 139 is \(\sqrt[3]{1\times3\times9}\)=3.
What is the smallest three-digit number whose first digit is 4 and for which the arithmetic and geometric means of its digits are both non-zero integers?

Show answer & extension

10 December

How many integers are there between 100 and 1000 whose digits add up to an even number?

Show answer

3 December

190 is the smallest multiple of 10 whose digits add up to 10.
What is the smallest multiple of 15 whose digits add up to 15?

23 December

How many numbers are there between 100 and 1000 that contain no 0, 1, 2, 3, or 4?

Show answer

11 December

There are five 3-digit numbers whose digits are all either 1 or 2 and who do not contain two 2s in a row: 111, 112, 121, 211, and 212.
How many 14-digit numbers are there whose digits are all either 1 or 2 and who do not contain two 2s in a row?

Show answer

6 December

There are 21 three-digit integers whose digits are all non-zero and whose digits add up to 8.
How many positive integers are there whose digits are all non-zero and whose digits add up to 8?

Show answer & extension

3 December

Write the numbers 1 to 81 in a grid like this:
$$ \begin{array}{cccc} 1&2&3&\cdots&9\\ 10&11&12&\cdots&18\\ 19&20&21&\cdots&27\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 73&74&75&\cdots&81 \end{array} $$
Pick 9 numbers so that you have exactly one number in each row and one number in each column, and find their sum. What is the largest value you can get?

Show answer

24 December

The digital product of a number is computed by multiplying together all of its digits. For example, the digital product of 1522 is 20.
How many 12-digit numbers are there whose digital product is 20?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

powers surds balancing 2d shapes chocolate number people maths even numbers ellipses sums addition decahedra geometry parabolas neighbours dodecagons sequences tiling rectangles square grids cards square numbers albgebra fractions factorials perfect numbers regular shapes digits percentages angles integration sum to infinity money median indices cube numbers coins unit fractions cryptic clues advent probabilty graphs determinants odd numbers cryptic crossnumbers tangents speed functions circles games logic crosswords binary wordplay averages complex numbers irreducible numbers polygons taxicab geometry coordinates chess shapes books elections clocks colouring star numbers geometric mean grids pentagons numbers grids planes cubics quadrilaterals consecutive integers products geometric means menace tournaments spheres quadratics partitions dates floors medians mean crossnumbers time numbers matrices doubling routes expansions calculus folding tube maps hexagons lines square roots volume polynomials digital products palindromes sport shape probability range 3d shapes sets the only crossnumber prime numbers means area consecutive numbers gerrymandering integers perimeter axes factors trigonometry squares rugby triangles multiples multiplication algebra dominos differentiation christmas proportion pascal's triangle bases division chalkdust crossnumber symmetry dice triangle numbers scales combinatorics digital clocks arrows remainders ave

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025