mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

23 December

I draw the parabola \(y=x^2\) and mark points on the parabola at \(x=17\) and \(x=-6\). I then draw a straight line connecting these two points.
At which value of \(y\) does this line intercept the \(y\)-axis?

Show answer

22 December

There are 12 ways of placing 2 tokens on a 2×4 grid so that no two tokens are next to each other horizontally, vertically or diagonally:
Today's number is the number of ways of placing 2 tokens on a 2×21 grid so that no two tokens are next to each other horizontally, vertically or diagonally.

Show answer

21 December

Arrange the digits 1–9 (using each digit exactly once) so that the three digit number in: the middle row is a prime number; the bottom row is a square number; the left column is a cube number; the middle column is an odd number; the right column is a multiple of 11. The 3-digit number in the first row is today's number.
today's number
prime
square
cubeoddmultiple of 11

Show answer

20 December

What is the area of the largest area triangle that has one side of length 32 and one side of length 19?

Show answer

19 December

The equation \(352x^3-528x^2+90=0\) has three distinct real-valued solutions.
Today's number is the number of integers \(a\) such that the equation \(352x^3-528x^2+a=0\) has three distinct real-valued solutions.

Show answer

Tags: graphs, cubics

18 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 11
+ × ×
++= 17
× - +
++= 17
=
11
=
17
=
17

Show answer

Tags: numbers, grids

17 December

The digital product of a number is computed by multiplying together all of its digits. For example, the digital product of 6273 is 252.
Today's number is the smallest number whose digital product is 252.

Show answer

16 December

Each clue in this crossnumber is formed of two parts connected by a logical connective: and means that both parts are true; nand means that at most one part is true; or means that at least one part is true; nor means that neither part is true; xor means that exactly one part is true; xnor means that either both parts are false or both parts are true. No number starts with 0.

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

volume cubics powers money integration 2d shapes parabolas algebra games means numbers grids median hexagons consecutive numbers dodecagons circles cube numbers determinants dominos taxicab geometry perimeter square roots probability crossnumbers averages elections factors angles balancing bases geometry chess the only crossnumber albgebra remainders area coins cryptic crossnumbers coordinates pentagons sum to infinity matrices lines quadrilaterals rugby digits logic rectangles cards proportion wordplay star numbers ellipses 3d shapes regular shapes range cryptic clues binary geometric mean routes symmetry combinatorics multiplication dice graphs fractions squares neighbours grids folding tube maps planes advent division shape time consecutive integers expansions complex numbers crosswords christmas integers axes tournaments shapes surds medians triangle numbers calculus factorials palindromes square grids gerrymandering trigonometry speed numbers spheres geometric means ave chocolate menace digital products sums unit fractions differentiation products pascal's triangle arrows probabilty people maths irreducible numbers prime numbers functions sequences addition indices number perfect numbers percentages multiples colouring quadratics polygons chalkdust crossnumber decahedra digital clocks doubling sport dates polynomials clocks square numbers odd numbers triangles mean scales floors books partitions tangents sets even numbers tiling

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025