mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

9 December

The diagram below shows a rectangle. Two of its sides have been coloured blue. A red line has been drawn from two of its vertices to the midpoint of a side.
The total length of the blue lines is 50cm. The total length of the red lines is also 50cm. What is the area of the rectangle (in cm2)?

Show answer

8 December

Noel writes the numbers 1 to 17 in a row. Underneath, he writes the same list without the first and last numbers, then continues this until he writes a row containing just one number:
What is the sum of all the numbers that Noel has written?

Show answer & extension

Tags: numbers

7 December

There are 8 sets (including the empty set) that contain numbers from 1 to 4 that don't include any consecutive integers:
\(\{\}\), \(\{1\}\), \(\{2\}\), \(\{3\}\), \(\{4\}\), \(\{1,3\}\), \(\{1,4\}\), \(\{2, 4\}\)
How many sets (including the empty set) are there that contain numbers from 1 to 14 that don't include any consecutive integers?

Show answer & extension

Tags: number, sets

6 December

There are 5 ways to tile a 4×2 rectangle with 2×1 pieces:
How many ways are there to tile a 12×2 rectangle with 2×1 pieces?

Show answer

5 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 15
+ +
++= 15
+ × ÷
++= 15
=
15
=
15
=
15

Show answer

Tags: numbers, grids

4 December

If \(n\) is 1, 2, 4, or 6 then \((n!-3)/(n-3)\) is an integer. The largest of these numbers is 6.
What is the largest possible value of \(n\) for which \((n!-123)/(n-123)\) is an integer?

Show answer

3 December

190 is the smallest multiple of 10 whose digits add up to 10.
What is the smallest multiple of 15 whose digits add up to 15?

2 December

Holly adds up the first six even numbers, then adds on half of the next even number. Her total is 49.
Next, Holly adds up the first \(n\) even numbers then adds on half of the next even number. This time, her total is 465124. What is \(n\)?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

digital products people maths differentiation multiples chess cards balancing time complex numbers taxicab geometry sport sum to infinity wordplay coordinates volume coins axes grids games tangents division crossnumbers gerrymandering remainders median arrows elections decahedra binary neighbours unit fractions proportion chocolate expansions pentagons dates square numbers money cubics products square grids functions lines quadratics ave albgebra palindromes trigonometry books shapes pascal's triangle area crosswords quadrilaterals integers folding tube maps cube numbers angles probabilty bases geometric mean probability polynomials colouring integration rugby irreducible numbers square roots christmas consecutive integers even numbers determinants cryptic clues dominos dice advent range squares numbers speed calculus fractions dodecagons factorials geometric means cryptic crossnumbers geometry powers indices consecutive numbers regular shapes menace perfect numbers prime numbers triangles scales sets surds floors planes shape hexagons digits doubling factors chalkdust crossnumber 3d shapes polygons tiling star numbers multiplication 2d shapes matrices combinatorics sums triangle numbers number parabolas algebra numbers grids spheres averages mean addition clocks graphs ellipses digital clocks the only crossnumber odd numbers percentages sequences medians routes means logic symmetry partitions rectangles circles tournaments perimeter

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025