mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

18 December

Some numbers can be written as the product of two or more consecutive integers, for example:
$$6=2\times3$$ $$840=4\times5\times6\times7$$
What is the smallest three-digit number that can be written as the product of two or more consecutive integers?

17 December

If you expand \((a+b+c)^2\), you get \(a^2+b^2+c^2+2ab+2ac+2bc\). This has 6 terms.
How many terms does the expansion of \((a+b+c+d+e+f)^5\) have?

Show answer

16 December

Some numbers can be written as the sum of two or more consecutive positive integers, for example:
$$7=3+4$$ $$18=5+6+7$$
Some numbers (for example 4) cannot be written as the sum of two or more consecutive positive integers. What is the smallest three-digit number that cannot be written as the sum of two or more consecutive positive integers?

Show answer & extension

15 December

The arithmetic mean of a set of \(n\) numbers is computed by adding up all the numbers, then dividing the result by \(n\). The geometric mean of a set of \(n\) numbers is computed by multiplying all the numbers together, then taking the \(n\)th root of the result.
The arithmetic mean of the digits of the number 132 is \(\tfrac13(1+3+2)=2\). The geometric mean of the digits of the number 139 is \(\sqrt[3]{1\times3\times9}\)=3.
What is the smallest three-digit number whose first digit is 4 and for which the arithmetic and geometric means of its digits are both non-zero integers?

Show answer & extension

14 December

The function \(f(x)=ax+b\) (where \(a\) and \(b\) are real constants) satisfies
$$-x^3+2x^2+6x-9\leqslant f(x)\leqslant x^2-2x+3$$
whenever \(0\leqslant x\leqslant3\). What is \(f(200)\)?

Show answer

13 December

Today's number is given in this crossnumber. No number in the completed grid starts with 0.

Show answer

12 December

What is the smallest value of \(n\) such that
$$\frac{500!\times499!\times498!\times\dots\times1!}{n!}$$
is a square number?

Show answer

11 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 15
+ + ÷
+= 10
+ ×
÷×= 3
=
16
=
1
=
30

Show answer

Tags: numbers, grids

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

squares addition games numbers grids parabolas unit fractions functions means fractions expansions spheres floors quadrilaterals books shapes gerrymandering people maths coins chocolate surds rectangles money area remainders tournaments mean factors elections division crossnumbers palindromes dice number albgebra geometry algebra lines perimeter dominos averages taxicab geometry doubling grids powers range factorials sport even numbers sets pentagons trigonometry medians symmetry cards scales the only crossnumber binary square numbers probabilty colouring cryptic crossnumbers balancing determinants clocks arrows volume time sum to infinity cube numbers angles 2d shapes chess tiling percentages cubics chalkdust crossnumber multiplication advent christmas probability differentiation sequences proportion star numbers menace partitions combinatorics 3d shapes matrices neighbours ellipses square roots perfect numbers shape sums logic regular shapes cryptic clues triangles prime numbers tangents graphs rugby axes triangle numbers speed quadratics folding tube maps digital products decahedra integers complex numbers circles polynomials routes consecutive integers digits consecutive numbers calculus hexagons products dodecagons pascal's triangle coordinates planes bases ave median square grids dates integration geometric mean polygons geometric means digital clocks multiples irreducible numbers numbers odd numbers indices wordplay crosswords

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025